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Abstract 

Background Klebsiella aerogenes has been reclassified from Enterobacter to Klebsiella genus due to its phenotypic 
and genotypic similarities with Klebsiella pneumoniae. It is unclear if clinical outcomes are also more similar. This 
study aims to assess clinical outcomes of bloodstreams infections (BSI) caused by K. aerogenes, K. pneumoniae 
and Enterobacter cloacae, through secondary data analysis, nested in PRO‑BAC cohort study.

Methods Hospitalized patients between October 2016 and March 2017 with monomicrobial BSI due to K. aerogenes, 
K. pneumoniae or E. cloacae were included. Primary outcome was a composite clinical outcome including all‑cause 
mortality or recurrence until 30 days follow‑up. Secondary outcomes were fever ≥ 72 h, persistent bacteraemia, 
and secondary device infection. Multilevel mixed‑effect Poisson regression was used to estimate the association 
between microorganisms and outcome.

Results Overall, 29 K. aerogenes, 77 E. cloacae and 337 K. pneumoniae BSI episodes were included. Mortality 
or recurrence was less frequent in K. aerogenes (6.9%) than in E. cloacae (20.8%) or K. pneumoniae (19.0%), but statistical 
difference was not observed (rate ratio (RR) 0.35, 95% CI 0.08 to 1.55; RR 0.42, 95% CI 0.10 to 1.71, respectively). 
Fever ≥ 72 h and device infection were more common in K. aerogenes group. In the multivariate analysis, adjusted 
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Background
Bloodstream infection (BSI) is one of the infectious 
syndrome with the highest health burden and is 
associated with important costs to the healthcare 
system, [1–4]and in the last years the incidence of 
Enterobacterales BSI has been increasing [5–13].

Studies estimate that overall mortality in K. 
pneumoniae BSI can range from 20 to 54%, being 
particularly high in KPC-producing K. pneumoniae 
infections [12, 14–20]. Enterobacter cloacae BSI 
mortality seems to be lower than K. pneumoniae, 
ranging from 19 to 33%, [14, 21–24] with a risk of 
recurrence between 11 to 21%, higher in cases with 
extended-spectrum beta-lactamase (ESBL) production 
[22, 24–26]. Most of the studies report K. aerogenes 
outcomes aggregated in Enterobacter genus. Though, 
K. aerogenes BSI mortality appears to be lower than in 
Enterobacter spp. infections, between 10 and 21% [21, 
27].

Since 1971, taxonomic studies have suggested that 
Enterobacter aerogenes should be classified into Klebsiella 
genus, due to its phenotypic and genotypic similarities 
to K. pneumoniae [28–31]. Recently, Tindall et  al. has 
proposed to officially change its name to K. aerogenes and 
Clinical and Laboratory Standards Institute (CLSI) and 
European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) have implemented it in their official 
documents [32, 33]. Genomic data also suggest that 
K. aerogenes could be more virulent than E. cloacae, 
since it possess virulence-encoding genes that were 
also identified in K. pneumoniae, but not described 
in E. cloacae [34–36]. If these similarities between K. 
aerogenes and K. pneumoniae translate into similar 
clinical outcomes is still to be determined. Some studies 
had tried to compare outcomes in K. aerogenes and E. 
cloacae BSI, but their findings have been contradictory 
and inconclusive [37–40]. We didn’t find any study 
comparing clinical outcomes in K. aerogenes and K. 
pneumoniae BSI.

This study aims to assess the clinical outcomes in 
patients with BSI caused by K. aerogenes, K. pneumoniae 
and E. cloacae, by exploring the association between a 
clinical composite outcome (mortality or recurrence) and 
these pathogens.

Methods
Study design
A secondary data analysis, nested in the PRO-BAC 
observational cohort study was performed. PRO-BAC 
was a Spanish multicentre study that prospectively 
included episodes of microbiological confirmed 
bacteraemia in hospitalised patients between 1st 
October 2016 and 31st March 2017 (Clinicaltrials.
gov NCT03148769; Register date 05/04/2017) [41]. 
Screening was done by daily review of blood culture 
results; individuals without systemic signs or symptoms 
of infection and subsequent episodes caused by the same 
microorganism within three months of the primary 
episode were also excluded [41]. Microorganism 
identification and susceptibility testing was performed 
according to the local laboratory guidelines that were 
aligned with the 2016 EUCAST recommendations or the 
CLSI guidelines. Clinical outcomes such as fever ≥ 72 h, 
complications secondary to treatment and metastatic 
infections were recorded at 30-days follow-up after 
bacteraemia diagnosis or hospital discharge. Mortality 
and BSI recurrence were assessed at 30-days, with post-
discharge follow-up done by reviewing medical records 
and national death registry [41].

Inclusion criteria for this study was adult individuals 
(≥ 18  years old) with BSI caused by K. aerogenes, K. 
pneumoniae or E. cloacae, each a different exposure 
group. Polymicrobial bacteraemia episodes were 
excluded. Primary outcome was a composite clinical 
outcome that includes all-cause mortality or recurrence 
within 30  days after BSI diagnosis. BSI recurrence was 
defined as bacteraemia with the same microorganism 
after negative blood cultures or clinical improvement 
and completion of active antimicrobial therapy [42]. 
Secondary outcomes were persistent fever, persistent 
BSI, and device infection secondary to BSI. Persistent 
fever was defined as fever ≥ 72 h in patients treated with 
an in  vitro active antimicrobial drug [42]. Persistent 
BSI was defined as positive blood culture with the same 
microorganism after 72  h of active antibiotic therapy 
[42]. Secondary infection included endovascular or 
orthopaedic devices infection secondary to BSI [42].

Setting of BSI acquisition was considered nosocomial 
if BSI occurred more than 48 h after hospital admission. 

for confounders (age, sex, BSI source, hospital ward, Charlson score and active antibiotic therapy), the estimates 
and direction of effect were similar to crude results.

Conclusions Results suggest that BSI caused by K. aerogenes may have a better prognosis than E. cloacae or K. 
pneumoniae BSI.

Keywords Bloodstream infection, Klebsiella aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, Mortality, 
Recurrence
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Episodes were considered HAI if any of the following 
was present: intravenous therapy, wound care or 
specialized nursing care at home, dialysis, radiotherapy 
or chemotherapy, two or more attendances to specialized 
outpatient clinic, residency in a nursing home or long 
term care facility in the 30 days before BSI; major surgery 
30 days before BSI (90 days if implant); or hospitalization 
for more than 2 days in acute or chronic care hospital in 
the 90  days before BSI. Episodes that don’t fulfil these 
criteria were considered community acquired.

Date of blood sample collection was considered the 
start of follow-up. In individuals with a primary outcome 
event, end of follow-up was considered when one of the 
events from the composite outcome was reached (death 
or recurrence), whatever happens first. In individuals 
without primary outcome, the date of last assessment 
was considered as the end of follow-up. In case of missing 
data in this variable, the date of hospital discharge was 
considered. Follow-up was right censored at 30  days 
after blood culture collection, according to the original 
study protocol. Loss to follow-up was considered when 
there was neither the date of last assessment nor date of 
hospital discharge.

Statistical analysis
Frequencies and proportions were used to describe the 
cohort characteristics and reported through tabulation 
of categorical variables by the exposure variable (K. 
aerogenes, E. cloacae and K. pneumoniae), including 
missing data. Median and interquartile range were 
calculated to describe non-normally distributed data and 
stratified by the microorganism group. All records in the 
final sample size for data analysis were included in the 
univariate and multivariate analysis, regardless of missing 
data in covariates.

To assess the impact of potential bias caused by 
excluding individuals with missing data on follow-up 
time, patients included in the final analysis were 
compared with the patients excluded. Differences in these 
groups were inspected and assessed using Pearson chi-
squared test for categorical variables and Wilcoxon rank-
sum test for continuous skewed variables (Additional 
file 1: Table S1).

Univariate analysis used two models: model 1 compares 
outcomes in K. aerogenes and E. cloacae groups with 
a baseline group of K. pneumoniae; model 2 compares 
outcomes in K. aerogenes and K. pneumoniae groups 
with a baseline group of E. cloacae. Rate of the outcome 
per 1000 persons-day and the 95% confidence interval for 
the exposure variable and other independent variables 
was calculated. Rate ratio and the 95% confidence 
interval of the association between the composite clinical 
outcome and the different microorganism’s groups 

and other independent variables was calculated using 
a multilevel mixed-effect Poisson regression model 
considering hospital as the first level, assuming clustering 
of observations within hospital. Wald test was used to 
test for association.

A direct acyclic diagram (DAG) was built to describe 
the conceptual framework between potential confounders 
and other independent variables in the association 
between exposure (K. aerogenes, K. pneumoniae or E. 
cloacae BSI) and outcome (death or recurrence), based 
on literature review (Additional file  1: Fig. S1). Possible 
confounders identified in the conceptual framework 
were BSI source, hospital ward, comorbidities, age, and 
antibiotic therapy. DAG was useful to exclude other 
independent variables from the multivariate model that 
can be in the causal pathway (severity) or ancestors of 
the exposure and/or outcome (BSI acquisition, antibiotic 
resistance, devices, and procedures). Disease severity 
is a mediator of the association between the exposure 
(microorganisms) and the outcome (death or recurrence), 
which may bias the results if included in the analysis. 
Ancestors are variables that are indirectly associated with 
the exposure or outcome through confounders; their 
inclusion in the model is redundant and can compromise 
model stability when missing data is an issue.

Multilevel mixed-effect Poisson regression model 
was used to calculate the crude and adjusted rate ratio 
for each possible confounder. Multicollinearity was 
checked by using variance inflation factor and variables 
with cut-off higher than 10 were excluded. The final 
multivariate model included all the variables without 
multicollinearity defined a priori as confounders (age and 
sex) and identified through the conceptual framework 
(BSI source, hospital ward, Charlson score and active 
antibiotic therapy).

Results
Descriptive analysis
From the 664 records in the PRO-BAC dataset with 
BSI caused by the microorganisms of interest, 132 were 
excluded due to exclusion criteria (131 polymicrobial 
BSI and 1 age < 18-year-old) and 89 were excluded due 
to missing data on follow-up time. The final sample size 
for analysis included 443 BSI episodes: 29 K. aerogenes, 
77 E. cloacae and 337 K. pneumoniae (Additional file 1: 
Fig. S2).

The median follow-up time was 30  days (IQR 11, 71) 
and similar between exposure groups (K. pneumoniae 
31  days vs E. cloacae 26  days vs. K. aerogenes 30  days) 
(Table 1).

Comparing between groups, patients with E. cloacae 
BSI had more frequent nosocomial infections (K. 
pneumoniae 46.0%, n = 155 vs. E. cloacae 71.4%, n = 55 vs. 
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Table 1 Sample characteristics: descriptive analysis according to microorganism group

Patient’s characteristics K. pneumoniae (n = 337) E. cloacae (n = 77) K. aerogenes (n = 29)

Sex

 Female 134 (39.8%) 24 (31.2%) 8 (27.6%)

 Missing 2 (0.6%) 0 (0.0%) 0 (0.0%)

Age*

 18–59 79 (23.4%) 23 (29.9%) 3 (10.3%)

 60–69 93 (27.6%) 20 (26.0%) 9 (31.0%)

 70–79 91 (27.0%) 21 (27.3%) 11 (37.9%)

 ≥ 80 74 (22.0%) 13 (16.9%) 6 (20.7%)

Charlson index*

 ≥ 5 159 (47.2%) 34 (44.2%) 15 (51.7%)

Department responsible

 Medical 185 (54.9%) 38 (49.4%) 19 (65.5%)

 Surgery 73 (21.7%) 22 (28.6%) 5 (17.2%)

 ICU 42 (12.5%) 10 (13.0%) 3 (10.3%)

 Other 29 (8.6%) 5 (6.5%) 2 (6.9%)

 Missing 8 (2.4%) 2 (2.6%) 0 (0.0%)

Setting of BSI acquisition*

 Community 90 (26.7%) 8 (10.4%) 9 (31.0%)

 Nosocomial 155 (46.0%) 55 (71.4%) 12 (41.4%)

 HAI 92 (27.3%) 14 (18.2%) 8 (27.6%)

BSI source

 Abdominal 79 (23.4%) 21 (27.3%) 6 (20.7%)

 Catheter 33 (9.8%) 14 (18.2%) 3 (10.3%)

 Respiratory 21 (6.2%) 4 (5.2%) 3 (10.3%)

 Urinary 141 (41.8%) 14 (18.2%) 11 (37.9%)

 Other 8 (2.4%) 3 (3.9%) 0 (0.0%)

 Unknown 54 (16.0%) 21 (27.3%) 6 (20.7%)

 Missing 1 (0.3%) 0 (0.0%) 0 (0.0%)

Pitt score*

 ≥ 4 35 (10.4%) 7 (9.1%) 2 (6.9%)

Severe sepsis*

 Yes 66 (19.6%) 11 (14.3%) 5 (17.2%)

Septic shock*

 Yes 51 (15.1%) 7 (9.1%) 5 (17.2%)

ESBL production

 Yes 79 (23.4%) 2 (2.6%) 0 (0.0%)

 Missing 85 (25.2%) 23 (29.9%) 9 (31.0%)

Carbapenemase production

 Yes 33 (9.8%) 0 (0.0%) 1 (3.4%)

 Missing 110 (32.6%) 27 (35.1%) 10 (34.5%)

Active empiric antibiotic

 Yes 250 (74.2%) 47 (61.0%) 19 (65.5%)

 Missing 41 (12.2%) 14 (18.2%) 2 (6.9%)

Time to start ATB

 Before 59 (17.5%) 10 (13.0%) 3 (10.3%)

 Same day 199 (59.1%) 47 (61.0%) 18 (62.1%)

 ≥ 1 days after 43 (12.8%) 9 (11.7%) 5 (17.2%)

 Missing 36 (10.7%) 11 (14.3%) 3 (10.3%)

Composite outcome* 64 (19.0%) 16 (20.8%) 2 (6.9%)
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K. aerogenes 41.4%, n = 12), less common BSI secondary 
to urinary source (K. pneumoniae 41.8%, n = 141 vs. E. 
cloacae 18.2%, n = 14 vs. K. aerogenes 37.9%, n = 11) and 
the length of hospital stay was longer (K. pneumoniae 
14 days vs. E. cloacae 21 days vs. K. aerogenes 11 days); 
on the other hand, in K. pneumoniae group, antibiotic 
resistance was more common (ESBL: K. pneumoniae 
23.4%, n = 79 vs. E. cloacae 2.6%, n = 2 vs. K. aerogenes 
0%, n = 0; carbapenemase production: K. pneumoniae 
8.8%, n = 33 vs. E. cloacae 0%, n = 0 vs. K. aerogenes 3.4%, 
n = 1) but active empiric antibiotic therapy more frequent 
(K. pneumoniae 74.2%, n = 250 vs. E. cloacae 61.0%, 
n = 47 vs. K. aerogenes 65.5%, n = 19) (Table 1).

The primary composite outcome was less frequent 
in K. aerogenes group (K. pneumoniae 19.0%, n = 64 
vs. E. cloacae 20.8%, n = 16 vs. K. aerogenes 6.9%, 
n = 2) reflecting the findings of all-cause mortality (K. 
pneumoniae 18.4%, n = 62 vs. E. cloacae 19.5%, n = 15 
vs. K. aerogenes 6.9%, n = 2) and BSI recurrence (K. 
pneumoniae 4.5%, n = 15 vs. E. cloacae 10.4%, n = 8 vs. K. 
aerogenes 0%, n = 0). Persistent BSI was also less frequent 
in K. aerogenes group, while other secondary outcomes 
were more common (Table 1).

Variables with more than 10% of missing data were 
ESBL production (26.4%, n = 117), carbapenemase 
production (33.2%, n = 147), active empiric antibiotic 
therapy (12.9%, n = 57) and time to start antibiotic 
(11.1%, n = 49) (Additional file 1: Table S1). Missing data 
were similar between groups, except in active empiric 
antibiotic therapy, in which the proportion of missing 
data was higher in the E. cloacae group (Table 1).

Survival analysis
In total, 436 episodes were included in the survival 
analysis, corresponding to 75 events for a total time at 
risk of 9360 days (8 events per 1000 person-days). Seven 

BSI episodes (six K. pneumoniae and one E. cloacae) were 
excluded due to death at day 0.

The Kaplan–Meier curve shows a similar survival in E. 
cloacae and K. pneumoniae groups until day 17 (around 
87.5% survival). After day 17 the survival for E. cloacae 
group is slightly lower than in K. pneumoniae group, 
reaching around 75% in both groups at day 30. The K. 
aerogenes survival curve is difficult to interpret because 
only two events occurred in the early follow-up period 
(Fig.  1). There was no evidence of difference between 
groups in the log-rank test (p-value 0.337).

Univariate analysis
Patients with K. aerogenes BSI were 58% and 65% less 
likely to die or have recurrence, when compared with K. 
pneumoniae (rate ratio (RR) 0.42; 95% CI 0.10 to 1.71) 
and E. cloacae (RR 0.35; 95% CI 0.08 to 1.55), respectively, 
without statistical evidence for an association between 
microorganisms and outcome (p-value 0.379) (Table  2). 

Table 1 (continued)

Patient’s characteristics K. pneumoniae (n = 337) E. cloacae (n = 77) K. aerogenes (n = 29)

Recurrence* 15 (4.5%) 8 (10.4%) 0 (0.0%)

All‑cause mortality* 62 (18.4%) 15 (19.5%) 2 (6.9%)

Infection related mortality* 38 (11.3%) 7 (9.1%) 1 (3.4%)

Persistent BSI* 19 (5.6%) 5 (6.5%) 0 (0.0%)

Fever ≥ 72H* 49 (14.5%) 11 (14.3%) 5 (17.2%)

Device infection* 8 (2.4%) 1 (1.3%) 1 (3.4%)

Length of hospital stay 14 (7, 31) (n = 239) 21 (11, 35) (n = 54) 11 (4, 22) (n = 19)

Follow‑up time, days 31 (11, 73) (n = 337) 26 (11, 52) (n = 77) 30 (11, 61) (n = 29)

Composite outcome: death or recurrence at 30-day. Severe sepsis and septic shock are mutually exclusive. Categorical variables reported as frequencies and 
proportions. Continuous variables reported as median, IQR and completed records

ATB: antibiotic; BSI: bloodstream infection; ESBL: extended-spectrum beta-lactamase; HAI: healthcare associated infection; ICU: intensive care unit
* No missing data

Fig. 1 Kaplan–Meier curve: cumulative survival by microorganism



Page 6 of 11Guedes et al. Ann Clin Microbiol Antimicrob           (2024) 23:42 

Table 2 Univariate analysis: association between the microorganism and other independent variables with composite outcome 
(death or recurrence)

Variables Events Persons-day Rate per 1000 (95% CI) Rate ratio (95% CI)* p-value†

Microorganism

 K. pneumoniae 58 7196 8.06 (6.23–10.43) Model 1‡: 1.00
Model 2§: 0.86 (0.48–1.50)

0.379

 E. cloacae 15 1555 9.65 (5.82–16.00) Model 1‡: 1.18 (0.67–2.10)
Model 2§: 1.00

 K. aerogenes 2 609 3.28 (0.82–13.13) Model 1‡: 0.42 (0.10–1.71)
Model 2§: 0.35 (0.08–1.55)

Sex

 Female 33 3285 10.05 (7.14–14.13) 1.00 0.110

 Male 41 6028 6.80 (5.01–9.24) 0.69 (0.43–1.09)

Age

 18–59 12 2425 4.95 (2.81–8.71) 1.00 0.039

 60–69 16 2657 6.02 (3.69–9.83) 1.17 (0.55–2.49)

 70–79 29 2609 11.12 (7.72–16.00) 2.21 (1.12–4.36)

 ≥ 80 18 1669 10.78 (6.79–17.12) 2.14 (1.02–4.46)

Charlson index

 < 5 19 5149 3.69 (2.35–5.79) 1.00 0.001

 ≥ 5 56 4211 13.30 (10.23–17.28) 3.56 (2.11–6.01)

Department responsible

 Medical 45 5132 8.77 (6.55–11.74) 1.00 0.198

 Surgery 10 2145 4.66 (2.51–8.66) 0.53 (0.27–1.06)

 ICU 13 1168 11.13 (6.46–19.17) 1.22 (0.65–2.30)

 Other 4 717 5.58 (2.09–14.86) 0.66 (0.24–1.87)

Setting of BSI acquisition

 Community 20 1994 10.03 (6.47–15.55) 1.00 0.258

 Nosocomial 41 4947 8.29 (6.10–11.26) 0.79 (0.46–1.37)

 HAI 14 2419 5.79 (3.43–9.77) 0.56 (0.28–1.12)

BSI source

 Abdominal 19 2245 8.46 (5.40–13.27) 1.00 0.598

 Catheter 5 1156 4.33 (1.80–10.39) 0.51 (0.19–1.38)

 Respiratory 7 617 11.35 (5.41–23.80) 1.35 (0.56–3.24)

 Urinary 27 3401 7.94 (5.44–11.58) 0.93 (0.51–1.68)

 Other 3 226 13.27 (4.28–41.16) 1.60 (0.47–5.47)

 Unknown 13 1711 7.60 (4.41–13.09) 0.87 (0.43–1.77)

Pitt score

 < 4 55 8647 6.36 (4.88–8.28) 1.00 0.001

 ≥ 4 20 713 28.06 (18.10–43.48) 4.47 (2.63–7.59)

Severe sepsis

 No 51 7695 6.63 (5.04–8.72) 1.00 0.002

 Yes 24 1665 14.41 (9.66–21.51) 2.16 (1.32–3.54)

Septic shock

 No 53 8328 6.36 (4.86–8.33) 1.00 0.001

 Yes 22 1032 21.32 (14.04–32.38) 3.45 (2.08–5.74)

ESBL production

 No 37 5182 7.14 (5.17–9.85) 1.00 0.616

 Yes 15 1737 8.64 (5.21–14.32) 1.17 (0.63–2.17)

Carbapenemase production

 No 40 5501 7.27 (5.33–9.91) 1.00 0.894

 Yes 5 704 7.10 (2.96–17.06) 1.07 (0.41–2.81)
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Individuals with E. cloacae BSI were 18% more likely of 
having the outcome of interest (RR 1.18; 95% CI 0.67 to 
2.10), when compared to K. pneumoniae group, without 
statistical evidence of an association (p-value 0.379) 
(Table 2).

Men were 31% less likely to develop the composite 
outcome, when compared to women, without evidence 
of an association (RR 0.69; 95% CI 0.43 to 1.09; p-value 
0.110) (Table  2). Compared to patients aged 18 to 
59 years, individuals aged 70 to 79 years and over 80 years 
were 2.21 times (RR 2.21; 95% CI 1.12 to 4.36) and 2.14 
times (RR 2.14; 95% CI 1.02 to 4.46) more likely to die 
or have recurrence, respectively, with evidence for this 
association (p-value 0.039) (Table 2).

There was evidence that participants with a Charlson 
comorbidity index ≥ 5 were 3.56 times more likely of 
dying or having recurrence, when compared to index < 5 
(RR 3.56; 95% CI 2.11 to 6.01; p-value 0.001) (Table  2). 
Compared with individuals admitted to medical wards, 
patients in surgical departments were 47% less likely to 
die or recurrence (RR 0.53; 95% 0.27 to 1.06), without 
statistical evidence of an association (p-value 0.198) 
(Table  2). Individuals with catheter associated BSI were 
49% less likely to have the composite outcome (RR 
0.51; 95% CI 0.19 to 1.38), while respiratory tract were 
35% more likely (RR 1.35; 95% CI 0.56 to 3.24), when 
compared to abdominal source, without statistical 
evidence of an association (p-value 0.598) (Table  2). 
There was no association between active empiric 
antibiotic and the outcome under study (RR 0.94; 95% CI 
0.49 to 1.81, p-value 0.863) (Table 2).

Multivariate analysis
In the adjusted analysis the association between 
microorganisms and clinical outcome was slightly 
decreased towards the null, when compared to the crude 

analysis. Individuals with K. aerogenes were 56% and 52% 
less likely to die or having recurrence, when compared 
to K. pneumoniae (RR 0.44; 95% CI 0.11 to 1.84; p-value 
0.262) and E. cloacae (RR 0.48; 95% CI 0.10 to 2.30; 
p-value 0.361), respectively, without statistical evidence 
of an association (Table 3).

Men were 24% less likely to develop the composite 
outcome, when compared to women (RR 0.76; 95% CI 
0.44 to 1.31; p-value 0.330) (Table  3). Compared to the 
age group 18 to 59  years, individuals between 60 to 
69  years were 27% less likely to die or have recurrence 
(RR 0.73; 95% CI 0.30 to 1.78; p-value 0.483), while 
individuals between 70 to 79  years old were 32% more 
likely (RR 1.32; 95% CI 0.59 to 2.93; p-value 0.499) 
(Table 3).

Charlson comorbidity index equal or above 5 was 
associated with a 3.87-fold increase in the risk of death 
or recurrence, when compared to patients with a lower 
index (RR 3.87; 95% CI 1.94 to 7.69; p < 0.001) (Table 3). 
Patients admitted to surgical had 34% less risk of worse 
outcome, when compared to individuals in the medical 
ward (RR 0.66; 95% CI 0.29 to 1.52; p-value 0.331) 
(Table 3). The risk of death or recurrence was 39% higher 
in BSI secondary to respiratory tract infection, when 
compared to abdominal source (RR 1.39; 95% CI 0.50 to 
3.82; p-value 0.527) (Table 3). Patients treated with active 
empiric therapy seems to have a lower risk of death or 
recurrence, without statistical evidence of an association 
(RR 0.84; 95% CI 0.41 to 1.72; p-value 0.634) (Table 3).

Discussion
In this cohort study, individuals with K. aerogenes BSI 
were 58% and 65% less likely to die or have recurrence, 
when compared to K. pneumoniae and E. cloacae, 
respectively, although there was no evidence for an 
association. After adjusting for possible confounders, the 

Table 2 (continued)

Variables Events Persons-day Rate per 1000 (95% CI) Rate ratio (95% CI)* p-value†

Active empiric antibiotic

 No 12 1523 7.88 (4.48–13.87) 1.00 0.863

 Yes 50 6848 7.30 (5.53–9.63) 0.94 (0.49–1.81)

Time to start ATB

 Before 16 1591 10.06 (6.16–16.42) 1.00 0.473

 Same day 38 5747 6.61 (4.81–9.09) 0.69 (0.38–1.25)

 ≥ 1 days after 9 1248 7.21 (3.75–13.86) 0.74 (0.32–1.70)

ATB: antibiotic; BSI: bloodstream infection; ESBL: extended-spectrum beta-lactamase; HAI: healthcare associated infection; ICU: intensive care unit
* Multilevel mixed-effect Poisson regression estimate
† Wald test
‡ Model 1 considering K. pneumoniae the baseline group
§ Model 2 considering E. cloacae the baseline group
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rate ratio decreased towards the null effect. Despite the 
structural and genetic similarities between K. aerogenes 
and K. pneumoniae, this study demonstrates that K. 
aerogenes infection might have better outcomes.

In the survival analysis E. cloacae and K. pneumoniae 
groups have similar survival proportion. In fact, in 
the univariate analysis, the difference between these 
pathogens was very small; patients with E. cloacae BSI 
were 18% more likely of dying or having recurrence, when 

compared to K. pneumoniae group, without statistical 
evidence of an association. In our study, patients with 
E. cloacae BSI had more frequent nosocomial infections 
and catheter-associated BSI, when compared to other 
groups, which might be indicators of worse prognosis in 
these patients.

Previous studies have found a trend in the opposite 
direction, with higher mortality in K. aerogenes when 
compared to E. cloacae BSI, without statistical evidence 
of difference between groups. [37, 40] A multicentre 
case–control study conducted in five Spanish hospitals 
have assessed all-cause mortality at 30-day follow-up in 
cases with K. aerogenes or E. cloacae BSI with a control 
group of individuals without BSI matched by age, sex, 
and hospital area. [37] The authors reported no difference 
in 30-day mortality between these two pathogens and E. 
cloacae and K. aerogenes groups were similar in terms of 
place of acquisition, BSI source, severity, and antibiotic 
resistance. [37] The higher mortality in this study can 
be due to higher proportion of nosocomial K. aerogenes 
infections. [37] A single centre cohort study in the USA 
compared in-hospital all-cause mortality in patients with 
K. aerogenes and E. cloacae BSI. [40] When assessing a 
composite outcome of death before discharge, recurrence 
and/or complications, K. aerogenes group had a worse 
clinical outcome, when compared to E. cloacae [40]. The 
worst clinical outcome in the K. aerogenes group can be 
due to higher proportion of acute kidney injury in these 
patients, an outcome that was not included in the PRO-
BAC analysis [40]. Proportion of recurrence was very low 
in both groups, when compared to PRO-BAC results [40]. 
The single centre design and the long period of enrolment 
can justify this difference, for example through spread 
of more virulent clones in the USA centre, differences 
in healthcare services through time or higher severity 
of patients admitted to this institution. This study also 
has the limitations of not considering the differences in 
length of hospital stay and it is not clear if these events 
have occurred before or after 30-days follow-up. An 
older cohort study from 2010, compared mortality in 
individuals admitted to a single centre in Seoul with K. 
aerogenes and E. cloacae BSI [39]. In this Korean study, 
there was statistical evidence of a higher mortality in the 
K. aerogenes group at 7-, 14- and 21-days follow-up [39]. 
Even though the proportion of septic shock is similar in 
both studies, the differences in results can be due to a 
higher proportion of ESBL production and nosocomial 
infections in the K. aerogenes group in the Korean study, 
when compared to PRO-BAC dataset [39]. The single 
centre design is a limitation of this study that could have 
influenced the higher proportion of ESBL-producing 
bacteria and nosocomial infections, more common in 
centres with inefficient infection prevention and control 

Table 3 Multivariate analysis adjusted for age, sex, Charlson 
score, department, BSI source, and active empiric antibiotic

Includes 375 observations, 25 hospitals

BSI: bloodstream infection; ICU: intensive care unit
* Multilevel mixed-effect Poisson regression estimate
† Chi-squared test
‡ Model 1 considering K. pneumoniae the baseline group
§ Model 2 considering E. cloacae the baseline group

Variables Rate ratio (95% CI)* p-value†

Microorganism

 K. pneumoniae Model 1‡: 1.00
Model 2§: 1.10 (0.52–2.31)

Model 1‡: –
Model 2§: 0.806

 E. cloacae Model 1‡: 0.91 (0.43–1.92)
Model 2§: 1.00

Model 1‡: 0.806
Model 2§: –

 K. aerogenes Model 1‡: 0.44 (0.11–1.84)
Model 2§: 0.48 (0.10–2.30)

Model 1‡: 0.262
Model 2§: 0.361

Age

 18–59 1.00

 60–69 0.73 (0.30–1.78) 0.483

 70–79 1.32 (0.59–2.93) 0.499

 ≥ 80 0.98 (0.40–2.41) 0.959

Sex

 Female 1.00

 Male 0.76 (0.44–1.31) 0.330

Charlson index

 < 5 1.00

 ≥ 5 3.87 (1.94–7.69)  < 0.001

Department responsible

 Medical 1.00

Surgery 0.66 (0.29–1.52) 0.331

 ICU 1.09 (0.52–2.31) 0.820

 Other 0.86 (0.29–2.58) 0.794

BSI source

 Abdominal 1.00

 Catheter 0.91 (0.31–2.66) 0.863

 Respiratory 1.39 (0.50–3.82) 0.527

 Urinary 1.12 (0.56–2.25) 0.753

 Other 1.94 (0.37–10.03) 0.431

 Unknown 0.93 (0.40–2.18) 0.864

Active empiric antibiotic

 No 1.00

 Yes 0.84 (0.41–1.72) 0.634
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measures [43, 44]. Additionally, the analysis was not 
adjusted for confounding and K. aerogenes group was 
more frequently treated with inappropriate therapy, 
which could have biased the results [39].

On the other hand, findings from a more recent Korean 
case–control study are similar to the PRO-BAC analysis; 
there was statistical evidence of a higher mortality in E. 
cloacae group, when compared to K. aerogenes in the 
propensity score matched analysis [38]. Compared to 
PRO-BAC cohort, patients in Korean study have more 
frequent healthcare-associated infections and resistance 
to 3rd generation cephalosporins, while a higher 
proportion was treated with appropriate empiric therapy 
[38]. Even though the single centre design could be a 
limitation to results generalizability, the propensity score 
matched analysis reduces bias due to confounding. We 
didn’t find any study comparing clinical outcomes in K. 
aerogenes with K. pneumoniae BSI.

Our study uses a composite outcome that includes 
mortality or BSI recurrence at 30-day follow-up which 
may be consider an advantage, allowing to reflect a wider 
spectrum of clinical outcomes and increase the statistical 
study power, by allowing a higher number of outcome 
events per exposure group [45, 46]. The use of conceptual 
framework to decide which potential confounders 
should be included in the adjusted analysis improved 
the reliability of results, by avoiding over adjusting, 
increases the transparency of the analysis and supports 
the interpretation of the study results [47, 48].

The main limitation of our study is the small sample 
size and the low number of events in the three pathogens 
groups (particularly in the K. aerogenes group). The 
outcome assessment was done by review of medical 
records and national death registry, so we don’t expect 
that misclassification of the outcome have been an 
important cause of bias. Additionally, seven observations 
were excluded from the analysis, due to death at day 0, 
which could represent severe ill patients infected by a 
more virulent pathogen. However, most of them were 
infected by K. pneumoniae, which might have biased 
the results towards the null. Another relevant weakness 
was the exclusion of a high number of BSI episodes 
that didn’t have the date of entry or exit in the study. 
When comparing patients included and excluded from 
the analysis, the groups are very similar, only different 
in terms of antibiotic resistance and comorbidities 
(Additional file  1: Table  S1). The impact of these 
differences is difficult to predict; patients excluded could 
be less severe due to lower proportion of comorbidities 
or more severe due to higher presence of carbapenemase.

Reporting the results using rate per 1000 person-days 
provides an adjusted analysis for the time at risk. The 
fact that the analysis didn’t take into consideration the 

possibility of competing events probably hasn’t affected 
the results because the overall mortality in PRO-BAC 
dataset is lower than in previous studies.

Due to small sample size this study results might not 
be generalizable. Nevertheless, the high proportion 
of death and recurrence in general in K. aerogenes, E. 
cloacae and K. pneumoniae BSI, should raising awareness 
about the burden of these pathogens and the importance 
of appropriate therapy. The study findings stress the 
need to develop and implement rapid diagnostic 
tools in BSI, which could help in early prescription of 
appropriate target therapy. Other strategies, for example, 
antimicrobial stewardship programs, can also be 
important to support clinicians when deciding empirical 
therapy, taking into consideration local epidemiological 
data.

Conclusions
This study suggests that BSI caused by K. aerogenes may 
have a better prognosis than E. cloacae or K. pneumonia; 
and that E. cloacae BSI may have a similar prognosis as K. 
pneumoniae.

New studies with bigger sample size and focused on 
other populations (e.g., paediatrics) will be useful to 
clarify the contradictory findings described in literature. 
It would be interesting to have more studies using 
composite outcomes, since they represent a wider variety 
of possible outcomes, reflecting the natural history of this 
disease.
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