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Abstract

surfaces was evaluated microscopically.

Background: 10-Hydroxy-2-decenoic acid, an unsaturated fatty acid is the most active and unique component to
the royal jelly that has antimicrobial properties. Streptococcus mutans is associated with pathogenesis of oral cavity,
gingivoperiodontal diseases and bacteremia following dental manipulations. In the oral cavity, S. mutans colonize
the soft tissues including tongue, palate, and buccal mucosa. When considering the role of supragingival dental
plaque in caries, the proportion of acid producing bacteria (particularly S. mutans), has direct relevance to the
pathogenicity of the plaque. The genes that encode glucosyltransferases (gtfs) especially gtfB and gtfC are
important in S. mutans colonization and pathogenesis. This study investigated the hydroxy-decenoic acid (HDA)
effects on gtfB and gtfC expression and S. mutans adherence to cells surfaces.

Methods: Streptococcus mutans was treated by different concentrations of HPLC purified HDA supplied by Iran
Beekeeping and Veterinary Association. Real time RT-PCR and western blot assays were conducted to evaluate gtfB
and gtfC genes transcription and translation before and after HDA treatment. The bacterial attachment to the cell

Results: 500 ug mi™" of HDA inhibited gtfB and gtfC mRNA transcription and its expression. The same concentration
of HDA decreased 60% the adherence of S. mutans to the surface of P19 cells.

Conclusion: Hydroxy-decenoic acid prevents gtfB and gtfC expression efficiently in the bactericide sub-
concentrations and it could effectively reduce S. mutans adherence to the cell surfaces. In the future, therapeutic
approaches to affecting S. mutans could be selective and it's not necessary to put down the oral flora completely.
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Background

Oral streptococci are important components of the
complex oral biofilm known as dental plaque. Members
of the Streptococcus genus including Streptococcus
mutans are associated with dental caries [1,2]. In the
oral cavity, organisms colonize the tongue, palate, and
buccal mucosa [3,4]. Streptococcus mutans strains have
been recovered from the subgingival crevice, a well
studied microbial niche [5-7]. The ability of bacteria to
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colonize the different oral surfaces depends on their
binding potential. When considering the role of supra-
gingival dental plaque in dental caries, the proportion of
gram positive acid producing bacteria (particularly S.
mutans), has direct relevance to the pathogenicity of the
plaque. These microorganisms tolerate a low pH envir-
onment, and thrive in cariogenic substrates such as su-
crose [8]. The most frequent oral infections include
gingivoperiodontal diseases including gingivitis and
periodontitis, are caused by dental plaque, which is a
S. mutans produced biofilm [9-11]. The primary mech-
anism for adherence of S. mutans is the production of
glucan polymers from sucrose via glucosyltransferases
(Gtf) [12] that is an essential virulence factor associated
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with the pathogenesis of S. mutans [13]. Hence, the fac-
tors influencing expression of gtf genes are very import-
ant for prevention of dental plaques, caries, gingivitis,
gingival abscess and even bacteremia following dental
manipulation. Glucosyltransferases encoded by gtfB
and gtfC genes show similarities. GtfB is an exoenzyme
involved with the extracellular metabolism of Sucrose
[14]. GtfB synthesizes a polymer of mostly insoluble
(a-1,3-linked) glucan and GtfC synthesizes a mixture
of insoluble (a-1,3-linked) and soluble (a-1,6-linked)
glucans [15,16]. These glucans are important compo-
nents of the matrix of cariogenic biofilms.

The pH of the all experiments set between (7-7.5).
*Significant differences were tested by analysis of vari-
ance (ANOVA). p <0.05.

10-Hydroxy-2-decenoic acid (HDA) is an important
part of royal jelly. Royal jelly (R]) so called because it is
the exclusive food of the Queen bees, which secreted
by the hypopharyngeal and mandibular glands of Apis
mellifera bees to feed the queen [17]. R] is a natural
source of essential amino acids, lipids, vitamins, acetyl-
choline, and many other nutrients [18,19]. It has a wide
range of medical activities such as antimicrobial effects
[20,21] and preventing cell damage in cancer and HIV
patients [22,23]. The potency of antibacterial properties
of RJ is related to HDA [24,25], a bioactive component
that occupies 10% of the RJs total weight. The structure
of HDA is depicted in Figure 1. HDA is capable to in-
duce the dispersion of S. mutans biofilm microcolonies.
HDA is highly acidic and acts as a detergent and anti-
microbial agent [26]. It has antitumor [27] and collagen
production activities [28]. It is known as a safe natural
product, thus here we investigated the HDA effect on
gifB and gtfC expression and consequently adherence
of S. mutans colonies on the eukaryotic cell surfaces.

Methods

Preparation of HDA and bacterial treatment

HPLC purified 10-hydroxy-2-decenoic acid (Figure 1)
were provided by Iran Beekeeping and Veterinary Asso-
ciation (Tehran, Iran). Streptococcus mutans ATCC
25175 was purchased from Persian Type Culture Collec-
tion (PTCC, Tehran, Iran). The strain was cultured in
Brain Heart Infusion broth, (BHIB Difco, Detroit, USA)
at 37°C with 5% defibrinated sheep blood in an
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Figure 1 The structure of Trans 10-Hydroxy-2-Decenoic acid
(HDA) from Royal jelly.
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atmosphere containing 5% CO,. For treatment the cul-
tures were supplied by addition of 100 mM sucrose
(Merck, Germany). The early exponential phase cultures
(pH 6.8) were treated with 100, 200, 500 and
1000 pg ml™ of ethanol dissolved HDA (treatment in
peptone buffer, Difco) in 2 ml microtubes during 8 hours
and then transferred to the previous media. Untreated
peptone water was used as a control. The bacterial
growth was determined by measuring the optical dens-
ities (OD) at 600 nm. OD was monitored at 1 h inter-
vals. From the point that HDA is an acidic compound
and it may kill the bacteria by the pH changes we con-
trolled the pH (7-7.5) by NaHCO3 and NaOH buffer.
The treated cells extracted by centrifugation (10 min at
1000g) for other examinations. The culture supernatant
was also examined for GtfB/GtfC extracellular enzyme
analysis.

Time-kill assays

Time-kill study was performed by the broth dilution
method [29]. The inoculum of S. mutans was 1*10° CFU/
ml. The final concentration of the HDA was four times
the MIC (2000 pg ml™). Tubes containing the microor-
ganisms and the HDA in BHIB were incubated in 5%
CO, at 37°C; samples were removed for determination
of viable counts at 30 min and 1, 2, 4, 8, and 24 h. Serial
dilutions (10" to 10™*) were prepared in sterile saline so-
lution. The diluted sample (50 pl) was plated onto Brain
heart infusion agar (BHIA) with a spiral plater (Model
3000; Spiral Biotech, Bethesda, US). The plates were
incubated in 5% CO, for 48 h, when the number of col-
onies was determined. Killing curves were constructed
by plotting the logl0 CFU per milliliter over 24 h. All of
the assays were done in triplicate.

Evaluation of gtfB and gtfC expression via Real time RT-PCR
Total RNA from treated cultures of S. mutans were
extracted and purified using the RNeasy kit (Qiagen,
Germany) followed by digestion with RNase free
DNase-I according to the manufacturer’s instruction.
The cDNA were synthesized using a ¢cDNA synthesis
kit (Bio-Rad Lab, US). To check for DNA contamin-
ation, purified RNA without reverse transcriptase
served as a negative control. The expression of related
genes was quantified using the SYBR green reagent (2X
SYBR Green Supermix; Bio-Rad, CA) following the
instructions of the manufacturer on a Bio-Rad iCycler.
PCR was performed in multiplicate in optimized condi-
tions: 95°C denatured for 3 min, followed by 40 cycles
of 45 s at 94°C, 45 s at 55°C, and 45 s at 72°C using the
following primers: gtfB (F: 5° -CGAACAGCTTCTAA
TGGTGAAAAGCTT- 3°, R: 5-TTGGCTGCATTGC
TATCATCA-3’) and gtfC (F: 5-GCCACGGAACA
AGCAGTTCTGTAA- 3°, R: 5'-TAATACCAATTAT
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TTCCTAAGCTAA-3")(NCBI sequence Ref No. NC-
004350). Fluorescence signals were measured over 40
PCR cycles. The cycle number (Ct) at which the signals
crossed a threshold set within the logarithmic phase
was recorded. For quantitation, we evaluated the differ-
ence in cycle threshold (ACt) between the treated group
and vehicle control of each gene. The efficiency of amp-
lification of each pair of primers was determined by ser-
ial dilutions of templates and all were >0.9. Each sample
was normalized with the loading reference 16 S rRNA
(NCBI sequence Ref No. X58303). Experiments were
repeated at least three times.

Western blot analysis of GtfB and GtfC

Streptococcus mutans cultures grown with the various
concentrations of HDA (100-1000 pg ml™) were centri-
fuged 5 min at 5000g. The pellets were resuspended in
Tris HCl 30 mM, pH 8.1 and centrifuged 10 min at
10000 g. The pellets were vortexed in 200 pl sucrose 20%
in Tris HCI. These cells were resuspended in phosphate
buffer (pH 7) and were incubated on ice with 33 mg/L
lysozyme for 30 min and then were disrupted by sonic-
ation for 20s. After centrifugation for 15 min at 15000 g,
100 pl aliquot of the supernatant was mixed in sample
buffer as described previously [30] on 15% polyacryl-
amide gel electrophoresis. Final detection of GtfB and
GtfC enzymes was driven by western blot analysis using
goat anti-rabbit IgG conjugated with HRP (Dakopatts,
Glostrup, Denmark).

Streptococcus mutans adherence assay to P19 cells and
antibiotic protection assay

P19 embryonic cells purchased from Pasture Institute cel-
lular bank (Tehren, Iran) were maintained in Dulbecco’s
modified Eagle’s Medium (DMEM,Gibco, UK) supple-
mented with 10% fetal calf serum (FCS, Gibco, UK). Cells
were plated at 10° cells/well in six well plates coated with
collagen. After 1 day of incubation, the cells were exam-
ined under a phase-contrast microscope for morpho-
logical changes. Five areas, each containing minimum 100
cells, were randomly selected in each well, and were
counted. Cell proliferation was evaluated by counting the
total cell number after treatment with different concentra-
tions of HDA [31]. Prior to infection, S. mutans (10° CFU
per ml in BHI) were mixed either with 100 ml FCS and
100 ml BHI and incubated at 37°C for 1 h. The bacterial
mixtures were centrifuged at 5000 g for 5 min. The pellets
were washed once with PBS and resuspended in DMEM.
To determine the number of bacteria that were able to
reach inside the cell, antibiotic protection assay was per-
formed as described previously [32]. After 2 h of co-
culturing P19 with S. mutans, the wells were washed three
times with fresh DMEM/F12 without antibiotics to re-
move planktonic bacteria. One milliliter of DMEM/F12
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containing 300 ug/ml gentamicin and 10 ug/ml penicillin
was added to the wells and incubated for 3 h at 37°C in a
5% CO2 atmosphere to eliminate extracellular bacteria.
Next, the wells were washed 3 times with PBS without anti-
biotics and the P19 cells were lysed by PMSF in 1 ml of
dH,O for 20 min. The mixture of lysed P19 cells and free
bacteria was collected from the wells and serially diluted in
PBS, followed by plating onto BHI agar and incubation at
37°C in a 5% CO2 atmosphere. After 2 days, the CFUs were
counted and the percentage of intracellular bacteria relative
to the initial inoculum was calculated. Each experiment
was performed in triplicate under standard conditions.

Statistical analysis

The analysis of data was performed by ANOVA using
SPSS 11.0. Differences were considered to be statistically
significant when a value of P<0.05 was obtained.

Results

Time kill kinetic assay

The result of the time-kill study is shown in Figure 2.
HDA in 1000 pug ml™ rapidly reduced the viable counts
of S. mutans within 1 h of incubation (reduction of 1
log in the number of CFU). It has shown bactericidal
effects (a >3log decrease in the CFU) on S. mutans for
8 h of incubation (Figure 2). All the experiments were in
pH ranged between 7-7.5 by the buffer system as
described in methods.

Real Time RT PCR analysis

We performed real time RT-PCR experiments to exam-
ine the abundance of g¢fB and gtfC specific mRNA in S.
mutans cells treated with HDA (Figure 3) Equal

Log CFU/ml

1-

]

6 12 18 24
Incubation Time
Figure 2 Time-kill curve for S. mutans strain by hydroxy-

decenoic acid at 4 times of the MIC (data not shown). Symbols:
A: Test group and A: control group of S. mutans ATCC 25175.
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Figure 3 Transcription of gtfB/gtfC from S. mutans following HDA treatment. gtfB/gtfC expression is completely abrogated by exposure to
HDA. gtfB/gtfC levels are also reduced with lower concentrations of HDA. The error bars represent mean and standard deviations of experiments
performed in triplicate. gtf genes were more abundantly expressed in cultures that treated with 0.0, 100 and 200 ug ml™' of HDA but missing in

the cells treated with 1000 ug mi™" of HDA.

-

amounts of total RNA from early exponential phase cul-
tures were used to reveal the transcript levels of gtfB/
gtfC before and after HDA treatments. The analysis
revealed that the g¢fs were more abundantly expressed in
untreated cultures. No significant difference of gtfC
mRNA transcripts was observed among different treat-
ment groups from 0.0 to 100 pug ml-1 of HDA. While
500 pg ml-1 of HDA greatly inhibited gtfB and gtfC
transcription (Figure 3).

Glucosyltransferases analysis by Western blot

In order to verify whether change in expression of the
gtfB/gtfC at the transcriptional level could be duplicated
at the protein levels, the intra and extracellular proteins
were prepared from cultures of bacteria grown in the
enriched BHI medium before and after HDA treatment
analyzed by the western blot using goat anti-rabbit IgG.
The strength of GtfB and GtfC bands of different treat-
ment groups were revealed as shown in Figure 4. Con-
centration of 500 pug ml”" of HDA could repress the

production of Gtfs completely but the Gtfs production
was observed in the samples treated with 200 pg ml™ or
lower concentrations as expected from transcription
analysis (Figure 4). Therefore, the expression of g¢fB and
gtfC in response to HDA was consistent at the transcrip-
tional and translational levels.

Adherence to P19 cells

It was obvious that HDA could slightly reduce P19 em-
bryonal carcinoma cell proliferation and there is a sig-
nificant difference when compared with PBS control
cultures (Figure 5A,B). Also HDA could differentiate
the cells phenotype into neural cells but it didn’t show
major cytotoxicity effects on the cells (Figure 5A) as
compared by intact P19 cultures (Figure 5D). Our
examination showed that 500 pg ml™* of HDA prevented
adhesion of S. mutans to the P19 cell surfaces effectively
(Figure 5C) as compared by untreated S. mutans cul-
tures (Figure 5B). Concentrations of 100, 200, 500 and
1000 pg ml' of HDA prevent 12, 31, 59 and 61% of .

‘ Gtf B and GtfC expression

HDA

concentrations

Bactin 1000 pg/ml

GtiB
156 kD

GtiC
86kD

protein was used as control.

500 pg/ml

Figure 4 Western blot analysis of GtfB and GtfC enzymes. GtfB and GtfC proteins that are present in S. mutans treated with 0.0, 100, and
200 pg ml" concentrations of HDA but are missing in the cells treated with 500 and 1000 ug ml™' or higher concentration of HDA. The 16SrRNA

100pg/ml 0 pg/ml

200 pg/ml
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Figure 5 Cultures f P19 embryonal carcinoma monolayer cells: after treatment with HDA disrupted the organization of the monolayer of
P19 cells (A); and addition of S. mutans to monolayer of P19 cells that disrupted the organization of monolayer to a greater extension (B);
S. mutans treated with HDA in P19 cultures (C) and not treated culture (D). Magnification in part A is 600X and in the all other images is X400.

mutans cells from adherence to P19 embryonic cells, re-
spectively (Table 1) that determined by gram staining of
six well plate cultures.

Discussion

There are evidences that GtfB and GtfC enzymes are the
most important Gtfs related to dental caries [33]. The
large size of the gtf genes made transcriptional analysis
troublesome, but we decided to investigate g¢fB and gtfC
genes expression after treatment of the bacterial cultures
with a natural antimicrobial compound called HDA. In
the present study, it was found that HDA inhibited g¢/B
and gtfC mRNA transcription and expression. Also it
was a good adherence inhibitor of S. mutans.

Table 1 Inhibitory effect of HDA on S. mutans adherence
to the P19 cell

HDA concentration

Log of Cell count Percent of preventive

ug ml™ per Well adherence
0.00 6 0.00
100 5.28 12
200 4.14 31
500 246 59
1000 2.34 61

The pH of the all experiments set between (7-7.5). *Significant differences
were tested by analysis of variance (ANOVA). p<0.05.

It was found that the nutrient content of the media
culture regulates the progression of biofilms in organ-
isms [34]. Biosynthesis of glucan polymers is critical for
the adherence of S. mutans to the surfaces; hence, we
tested HDA effect on S. mutans attachment quality to
the eukaryotic cell surfaces. Because the levels of mRNA
is significantly higher in early than in the late exponen-
tial phase [35], our study was done based on early expo-
nential phase of S. mutans cultures. Despite the fact that
our model does not resemble exactly the microbial com-
munity found in dental plaques, yet it is profitable model
for our investigations.

It was established that the glycolysis and fermentation
yield acids that can acidify the biofilms and increase the
availability of sucrose [36]. Differential analysis of the S.
mutans grown in various nutrient revealed alterations in
the genes expression involved in biofilm formation. Also
production of glycolytic enzymes could regulate the ex-
pression of gtf genes [37]. The gtf genes are induced in
response to decreasing pH of the biofilms and/or in re-
sponse to the presence of a metabolizable sucrose [38].
Studies on S. mutans, using real time RT-PCR, showed
two fold increase of gff mRNA expression in the pres-
ence of sucrose [39]. Our real time RT-PCR assay
revealed significant decrease in gtfB and gtfC expression
after HDA treatment in spite of sucrose addition (Figure 3),
supporting HDA as a negative transcriptional regulator of
the sucrose dependent activity. However the concentration
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of sucrose has influence in the pH and g¢f genes regulation
[40] the present results showed that the pH effect can be
reversed by the HDA treatment (Figure 3).

The influence of HDA on gif transcriptional levels also
affected the levels of GtfB and GtfC proteins in the cul-
tures supernatant. Western blot analysis of GtfB and
GtfC enzymes indicated that significantly less Gtfs were
present in the cultures of S. mutans grown in the pres-
ence of HDA than for cells grown without treatment
(Figure 4). Ooshima and colleagues reported that an op-
timal GtfB/GtfC ratio is necessary for appropriate
colonization in vitro [41], hence divergence from this
proportional relation could compromise the adherence
of the treated bacteria to the cells as seen in Table 1.

Previously we found that high concentrations of R] could
inhibit the growth of S. mutans but also in lower concen-
trations it was inhibited g¢f genes expression [42]. Findings
of this study implied that HDA could penetrate into S.
mutans and kill the organism as tested by time-kill kinetic
assay (Figure 2). The mechanism by which the HDA inhi-
bits the expression of g¢fB and g¢fC and decreases water in-
soluble glucan is probably related to the binding to their
promoters, blocking RNA synthesis and their expression.

The down regulation of the g¢fB and gtfC genes is re-
sponsible for the easily detachable biofilm phenotype
and decrease in the attachment power of the organisms
to the P19 cell surfaces (Figure 5C) in comparison to the
untreated bacterial cultures (Figure 5B). By reduction in
glucan levels there is no more binding substrate that
may prohibits a-1,6 glucan dependent biomass aggrega-
tion. It has been shown that HDA stimulates collagen
production and enhances deposition of collagen in the
dermis [43]. Our investigation revealed that HDA
decreased the proliferation of P19 embryonic cells but
morphologic changes also occurred while neuron like
cells were observed by phase contrast microscopy
(Figure 5A). After HDA treatment of S. mutans the inva-
sion of P19 embryonal cells was decreased after 6 h of
incubation under the growth conditions described previ-
ously (Table 1). Concentration of 500 pg ml-1 of HDA
could inhibit adherence of S. mutans by 59% (Table 1).
By preventing adhesion of pathogenic bacteria to their
host cells; decreases amount of colonization and in this
way reduces the extent of pathogenicity.

The P19 embryonic cell invasion assay developed for
testing of HDA towards selected S. mutans represents
an attempt to recreate environmental conditions that
could be compared to the other eukaryotic cells, and
may develop a new model for testing the effect of
pharmaceutical compounds on pathogens.

Conclusion
In conclusion 10-hydroxy-2-decenoic acid treatment
could down-regulate the g¢fB and gtfC genes expression
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in S. mutans. Also it could decrease adherence of S.
mutans to the P19 cells surfaces. Future studies will
focus on differential display PCR and microarray analysis
to reveal additional S. mutans genes that are subjected
to HDA effects. This hypothesis will encourage our
understanding of gene regulation and signal transduc-
tion in S. mutans, and facilitate the development of
therapeutic approaches to control formation of the
plaque biofilms and dental caries.
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