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Background: Methicillin-resistant Staphylococcus aureus (MRSA) are clinically relevant pathogens that cause severe
catheter-related nosocomial infections driven by several virulence factors.

Methods: We implemented a novel model of infection in vitro of reconstituted human epithelium (RHE) to analyze
the expression patterns of virulence genes in 21 MRSA strains isolated from catheter-related infections in Mexican
patients undergoing haemodialysis. We also determined the phenotypic and genotypic co-occurrence of antibiotic- and
disinfectant-resistance traits in the S. aureus strains, which were also analysed by pulsed-field-gel electrophoresis (PFGE).

Results: In this study, MRSA strains isolated from haemodialysis catheter-related infections expressed virulence markers
that mediate adhesion to, and invasion of, RHE. The most frequent pattern of expression (present in 47.6% of the
strains) was as follows: fnbA, nbB, spa, clfA, clfB, cna, bbp, ebps, eap, sdrC, sdrD, sdrk, efb, icaA, and agr. Seventy-one
percent of the strains harboured the antibiotic- and disinfectant-resistance genes ermA, ermB, tet(M), tet(K), blaz, gacA,
qacB, and gacC. PFGE of the isolated MRSA revealed three identical strains and two pairs of identical strains. The strains
with identical PFGE patterns showed the same phenotypes and genotypes, including the same spa type (t895), suggesting
hospital personnel manipulating the haemodialysis equipment could be the source of catheter contamination.

Conclusion: These findings help define the prevalence of MRSA virulence factors in catheter-related infections. Some
of the products of the expressed genes that we detected in this work may serve as potential antigens for inclusion in a
vaccine for the prevention of MRSA-catheter-related infections.

Introduction

Staphylococcus aureus is a bacterial pathogen that causes
multiple infections in humans, ranging from superficial
skin infections to endocarditis, bone and joint infections,
septic shock [1], and severe haemodialysis catheter-related
infections [2]. S. aureus produce a broad spectrum of extra-
cellular and cell wall-associated virulence determinants that
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contribute to the severity of infection [3]. Microbial
adherence to cells and extracellular matrix is an essential
first step in the process of colonization and infection [4],
for which S. aureus express numerous surface adhesins
known as microbial surface components recognizing
adhesive matrix molecules (MSCRAMMSs). These adhesins
mediate adherence to host extracellular matrix components
such as fibrinogen, fibronectin, and collagen [5]. Patho-
genic adhesins include Fibronectin-binding protein A and
B (FnBPA and FnBPB); Staphylococcus protein A (Spa);
clumping factor A (CIfA); clumping factor B (CIfB); collagen
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adhesion (Cna); sialoprotein-binding protein (Bbp); elastin-
binding protein of Staphylococcus aureus (EbpS); extra-
cellular adhesion protein (Eap); serine aspartate repeat
proteins C, D, and E (SdrC, SdrD, and SdrE; [3]); and extra-
cellular fibrinogen-binding protein (Efb; [6]). Furthermore,
pathogenic S. aureus strains exhibit a great capacity for bio-
film formation on surfaces, making endovascular catheters
a favourable niche for infection. Biofilm formation requires
synthesis of PNAG (polymeric N-acetylglucosamine); the
enzymes responsible for its synthesis are encoded by the
icaADBC operon [7]. Expression of most virulence factors
in S. aureus is controlled by the agr locus [8].

The number of methicillin-resistant S. aureus (MRSA)
strains has steadily increased and nosocomial infections
caused by MRSA have become a serious problem world-
wide, as its presence has dramatically reduced the number
of effective antibiotics available for the prevention and
treatment of infections in hospitals and communities [9].
The main mechanism of methicillin resistance involves
expression of the mecA gene, which encodes penicillin-
binding protein 2a (PBP2a), a transpeptidase with low
affinity for B-lactams [10]. MRSA strains frequently carry
genes for multidrug resistance such as blaZ, which codes
pB-lactamases and confers resistance to [S-lactams; ermA,
ermB, and ermC confer erythromycin resistance; aac(69)-
Ie-aph(20)-la confers aminoglycoside resistance; tet(M),
tet(O), and tet(K) confer resistance to tetracycline; and
vanA and vanB confer vancomycin resistance [11]. Wide-
spread use of quaternary ammonium compounds (QAC)
in hospitals contributes to the selection of disinfectant-
resistant S. aureus [12]. In several staphylococcal species,
the gacA, gacB, and gacC genes have been identified in plas-
mids that also contain antibiotic-resistance genes [13-15].

The expression of virulence factors of S. aureus has been
studied iz vivo in animal models of infection [16,17], but
immune cellular factors and nutritional conditions have
affected the expression of virulence determinants. To
circumvent these problems, in this study we propose a
novel model of infection in vitro of reconstituted human
epithelium (RHE) to analyze the expression patterns
of virulence genotypes of MRSA strains isolated from
catheter-related infections in Mexican patients undergoing
haemodialysis. We also determined the phenotypic and
genotypic combinations of antibiotic- and disinfectant-
resistance in the S. aureus strains, which also were analysed
by pulsed-field-gel electrophoresis (PFGE).

Materials and methods

Bacterial strains

Twenty-one S. aureus strains were donated by the Labora-
torio Clinico de la Facultad de Estudios Superiores Iztacala
(Universidad Nacional Auténoma de México) for pheno-
typic and molecular analysis. These strains were isolated
from catheter-related infections of ambulatory patients
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(n=21) undergoing treatment at a public hospital in
Estado de México, México from January to May 2013. The
bacterial strains were identified by classical microbiologic
methods: Gram staining; mannitol, catalase, and coagulase
activity (Bactident-coagulase, Merck); and the Api 32 Staph
test (BioMerieux). S. aureus strains were molecularly char-
acterized by PCR amplification of 23S rRNA, coagulase
(coa), thermonuclease (nuc), clumping factor (clfA), pro-
tein A region X (spa), femA, and femB [18,19]. Bacterial
DNA was extracted with the Wizard Genomic DNA
Purification Kit (Promega). Resistance to methicillin was
determined by the cefoxitin disc diffusion test (Becton
Dickinson; inhibition zone, <21 mm) [20]. f-Lactamase
enzymes were detected by using paper discs impregnated
with the chromogenic cephalosporin nitrocephin (Becton
Dickinson, USA). This substrate changes from yellow to
red after the amide bond of the B-lactam ring is hydro-
lysed by p-lactamase. The change in colour was observed
from 5 min—1 h. The mecA gene, which encodes methicil-
lin resistance, was identified by conventional PCR [21]. S.
aureus ATCC 25923 (mecA -) and ATCC 33592 (mecA+)
were used as controls in each test.

Antibiotic susceptibility testing

The standard disc diffusion method of Kirby-Bauer in
Mueller Hinton agar (Bioxon) was used to evaluate anti-
biotic susceptibility. Multidiscs for Gram-positive bacteria
were used (Bio-Rad). Results were interpreted in accordance
with Clinical and Laboratory Standards Institute guidelines
[20]. The antibiotics were ampicillin (AM, 10 pg), cefalotin
(CFE, 30 pg), cefotaxime (CTX, 30 pg), levofloxacin (LEV,
5 pg), cefuroxime (CXM, 30 pg), dicloxacillin (DC, 1 pg),
erythromycin (E, 15 pg), gentamycin (GE, 10 pg), cefepime
(FEP, 30 pg), penicillin (PE, 10 U), tetracycline (TE, 30 pg),
and trimethoprim-sulfamethoxazole (SXT, 25 pg). S. aureus
ATCC 25923 (mecA-) and ATCC 33592 (mecA+) strains
were used as controls in each test.

Detection of antibiotic and disinfectant resistance genes
The tet(M), tet(O), tet(K), vanA, vanB, aac(69)-le-aph(20)-
Ia and blaZ genes were identified by PCR as described by
Rizzotti et al. [11] and ermA, ermB, ermC, msrA, mef, qacA,
qacB, and gacC as described by Zmantar et al. [12].

SCCmec types and agr groups
A multiplex PCR with four primer pairs was used to
identify the five main known SCCmec types [22] and
another multiplex PCR with five primers was used to
identify the agr groups [23].

RHE inoculation with S. aureus

Reconstituted human epithelium (RHE; SkinEthic Labora-
tories, Nice, France) consists of human epithelial cell lines
cultured on polycarbonate filters in vitro at the air-liquid
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interface in serum-free chemically defined medium. A total
of 2 x 10°S. aureus cells suspended in 50 uL PBS were
inoculated onto the surface of the RHE and incubated at
37°C for 72 h with 5% CO, and saturated humidity. The
maintenance media was changed every 24 h.

S. aureus RNA purification and reverse transcription

S. aureus cells were harvested from the RHE and suspended
in 1 mL RNA Protect Bacteria Reagent (Qiagen). The sam-
ple was vortexed 30 s and incubated at room temperature
5 min. After centrifugation at 9400 rpm for 10 min, the
cells were resuspended in 200 uL TE buffer (10 mM
Tris—HCI, 1 mM EDTA, pH 8) containing 10 mg/mL
lysozyme and 40 mg/mL lysostaphin. The sample was
vortexed 10 s and incubated at room temperature 5 min.
Total RNA was purified with the RN easy Mini Kit (Qiagen)
according to the manufacturer’s instructions, including
DNase treatment. The concentration and purity of total
RNA were analysed with a NanoDrop 2000 spectrophotom-
eter (Thermo Scientific). cDNA synthesis was performed
with the QuantiTec Reverse transcription kit (Qiagen)
according to the manufacturer’s instructions.

Real-Time PCR amplification

The primers for Real-Time PCR were described previously
as follows: fmbA, fubB, spa, clfA, clfB, cna, bbp, ebpS, eap,
SdrC, sdrD, sdrE, and efb [3]; and agr [24]. The Rotor-Gene
SYBR Green PCR kit (Qiagen) was used for Real-Time
PCR expression profiling of icaA [25] and gyrB (reference
gene; [26]) using a Rotor Gene Probe PCR Kit (Qiagen). S.
epidermidis ATCC 35984 and Escherichia coli ATCC 11775
were used as negative controls. S. aureus ATCC 33592 was
used as the positive control.

PFGE typing

MRSA isolates were PFGE typed by preparation of DNA
and resolution of the Smal-digested fragments as described
by McDougal et al. [27]. Samples were separated on a
CHEEF-DR II system (Bio-Rad). Gels were photographed
and digitized using a Bio-Rad Gel Doc. PFGE patterns
were analysed as described by Tenover et al. [28] for
bacterial strain typing.

Data analysis

PFGE patterns were analysed with Gene Tool and Gene
Directory software (Syngene). Reference standard S. aur-
eus NCTC 8325 was included in each gel for band
normalization. Percent similarities were obtained from the
weighted pair group with mathematical average (UPMGA)
based on Dice coefficients. Band position tolerance was
set at 1.25%. A similarity coefficient of 80% was selected
to define the pulsed-field type clusters.
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spa typing

The polymorphic X region of the protein A coding gene
(spa) was amplified and sequenced as described [29].
Corresponding spa-types were assigned using the SPA
Searcher website (http://seqtools.com). Ridom spa types
were subsequently assigned using the spa-typing website
(http://www.spaserver.ridom.de/) developed by Ridom Gmb.

Results

All S. aureus strains (n = 21) were resistant to methicillin
(Table 1). All MRSA strains (n = 21) expressed 7/15 studied
genes: spa, clfB cna, bbp, sdrC, icaA, and agr. [group 11
(n=18); group I (n=3)] during in vitro infection of
RHE (Table 2); 95.2% (n =20) expressed sdrD and efb;
90.4% (n=19) expressed fubA, clfA, ebps, and eap; 85.7%
(n = 18) expressed sdrE; and 80.9% (n = 17) expressed fubB.

Without considering the 7 genes expressed by all MRSA
strains, ten distinct expression patterns of virulence markers
were found during MRSA infection of RHE in vitro
(Table 3). Pattern 1, formed by the other 8 studied genes
(fubA, fubB, clfA, ebps, eap, sdrD, sdrE, ebf) was present in
ten (n =47.7%) MRSA isolates, whereas patterns 2 and 3,
both composed of 7 genes each, were expressed by two
strains. The other seven patterns were constituted by 4—7
genes and were expressed only by one MRSA strain
(Table 3).

PFGE analysis showed that MRSA strains were dis-
tributed in 15 distinct electrophoretic patterns (data not
shown). MRSA strains S-22 and S-36 (Table 2), isolated
from the catheters of different patients, have identical
electrophoretic patterns (data not shown) and the same
spa type as the S-59 and S-66 MRSA strains (spa type
t895). Three strains isolated from different patients showed
100% similarity by PFGE (S-77, S-79, S-82; Table 2) and
belonged to the same spa type t895. Two closely related
strains (S-8 and S108) were isolated from the catheters of
two different patients and two possibly related strains (S-16
and S-19) were isolated from two different patients. The
strains with identical PFGE patterns (S-22 and S-36; S-59
and S-66; S-77, S-79 and S-82) showed the same pheno-
types and genotypes (Table 1). The most frequent spa types
were t895 (76.2%; n = 16) and t008 (14.2%; n = 3; Table 2).

All MRSA strains were resistant to erythromycin (E),
ampicillin (AM), tetracycline (TE), and penicillin (PE;
Table 1). The frequency of resistance to other antibiotics
tested was: cefotaxime (CTX) 95.2%, n = 20; dicloxacil-
lin (DC) 95.2%, n =20; cefepime (FEP) 90.5%, n=19;
cefuroxime (CXM) 66.7%, n = 14; cefalotin (CF) 62%,
n =13; levofloxacin (LEV) 57.1%, n=12; trimethoprim-
sulfamethoxazole (SXT) 14.3%, n = 3; and gentamycin (GE)
14.3%, n =3 (Table 1). All MRSA strains were [-lactamase
producers (Table 1). The following patterns of antibiotic
resistance were found: 5 antibiotics (1 strain), 6 antibiotics
(2 strains), 7 antibiotics (5 strains), 9 antibiotics (1 strain),
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Table 2 Expression of virulence genes, spa typing, and PFGE in the MRSA strains

Strain fnbA fnbB spa clfA clifB cna bbp ebps eap sdrC sdrD sdrE efb icaA agr Group spa typing *PFGE
S-10 + + + + + + + + + + + + + Il 895 1"
S-16 + + + + + + + + + + + + + + Il t002 2k
S-19 + + + + + + + + + + + - + + Il 895
S-22 + + + + + + + + + + + + + I 895 3¢
536 + + + + + + + + + + + + + Il 895
5-52 - + + - + + + + + + + + + + I 895 4
S-58 + + + - + o+ + + + + - + + I t895 sh
$-59 + + + + o+ + + + + + + + + I 1895 6°
S-66 + + + + + + + + + + + + + + I 895
S-73 - + + + + + + + + + + + + + Il t008 7
S-75 + - + + + + + + + + + + + + I 1895 8"
S-76 + - + + + + + + + + + + + + Il t189 9t
S-77 + + + + + + + + + + + + + + I 895 10°
S-79 + + + + + + + + + + + + + + Il 895
S-82 + + + + + + + + + + + + + + Il 895
593 + + + + + + + - + + + + + + Il t008 14
S-103 + + + + + o+ + + - + + + + + I 1895 128
5106+ - + + + o+ + - + + + + + + I 895 134
5-107 + - + + + + + - + - + - + [ 008 144
S8 + + + + + + + + - + + I 895 15P
S-108 + + + + o+ + + + + I 1895
No 19 17 21 19 21 21 21 19 19 21 20 18 20 21 21

% 904 809 100 904 100 100 100 904 904 100 952 857 952 100 100

*A = Different, B = Possibly related, C =Identical and D = Closely related.

10 antibiotics (8 strains), 11 antibiotics (3 strains), and 12
antibiotics (1 strain) (Table 1).

Type IV SCCmec was identified by PCR in 12 MRSA
strains, whereas type II SCCmec was detected in 6 strains,
and type I SCCmec in 3 strains (Table 1). The ermA and
ermB genotypes were identified in all strains, whereas
ermC was detected only in S-73. All strains carried the tet
(M), tet(K), and blaZ genes. The aac(69)-le- aph(20)-la

Table 3 *Patterns of gene expression in the MRSA strains

gene was identified in gentamycin-resistant strains S-19,
S-58, and S-108 (Table 2). The mrsA, mef, tet(O), vanA,
and vanB antibiotic resistance genes were not identified in
any of the MRSA strains.

Our evaluation of disinfectant resistance revealed 100%
(n=21) of the MRSA strains carried gacC, 76% (n = 16)
carried gacA, and 76% (n = 16) carried gacB. Fifteen strains
(71.4%) showed the same phenotype/genotype pattern:

Pattern N° Expressed genes of the MRSA strains (n=21)

Ne of strains (%) Ne of genes per pattern (n=15) N°.%

1 fnbA, fnbB, clfA, ebps, eap, sdrD, sdrk, efb 10 (47.7) 15 (100)
2 fnbA, clfA, ebps, eap, sdrD, sdrk, efb 2 (9.5) 4 (93.3)
3 fnbA, fnbB, clfA, ebps, eap, sdrD, efb 2 (9.5 4(933)
4 fnbB, clfA, ebps, eap, sdrD, sdrE, efb 14.7) 4(93.3)
5 fnbA, fnbB, clfA, eap, sdrD, sdrE, efb 14.7) 4(93.3)
6 fnbA, fnbB, clfA, ebps, sdrD, sdrE, efb 1(4.7) 4(93.3)
7 fnbB, ebps, eap, sdrD, sdrF, efo 14.7) 3 (86.6)
8 fnbA, fnbB, ebps, eap, sdrD, efb 1(4.7) 3 (86.6)
9 fnbA, clfA, eap, sdrD, sdrk, efb 14.7) 3 (86.6)
10 fnbA, clfA, ebps, sdrk 14.7) 1 (73.3)

*Without considering the 7 genes expressed by all strains (spa, clfb, cna, bbp, sdrC, icaA, and agr). fnbA/B=Fibronectin-binding protein A/B; cl/fA=clumping factor A;
ebps=elastin-binding protein; eap=extracellular adhesion protein; sdrD/E=Serin aspartate repeat protein D/E; efb=Extracellular fibrinogen binding protein.
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resistance to erythromycin, ampicillin, tetracycline, cefotax-
ime, penicillin, B-lactamase production/ermA, ermB, tet(M),
tet(K), blaZ, qacA, qacB, and gacC positivity.

Discussion

Haemodialysis patients who are infected with methicillin-
resistant Staphylococcus aureus (MRSA) are considered to
have healthcare-associated (HA) infections [30,31].

For colonization and infection, bacterial adhesion to
host extracellular matrix components like fibrinogen,
fibronectin, and collagen is essential [5]. Therefore, there
has been a strong interest in studying the involvement of
proteins of the MSCRAMMs family of S. aureus using
in vivo and in vitro models of infection [32-35]. In this
study we implemented a novel model of infection in vitro
of reconstituted human epithelium (RHE) to analyze the
expression patterns of the MSCRAMMs family adhesion
genes, and icaA and agr in S. aureus strains isolated from
catheter-related infections in Mexican patients subjected
to haemodialysis. Our data show that most of the genes
that we studied were expressed by MRSA after infection
of RHE (Table 2), which reflects the pathogenic behaviour
of these strains. We identified ten different patterns of
expression (Table 3), of which pattern No. 1, represented
by the 15 genes studied (fnbA, fubB, spa, clfA, clfB, cna,
bbp, ebps, eap, sdrC, sdrD, sdrE, efb, icaA, agr), was
present in ten MRSA strains (47.7%; Table 3). These re-
sults show that during infection of RHE, the MRSA strains
expressed 11 to 13 genes coding for bacterial surface pro-
teins; icaA, which participates in biofilm formation [7];
and the agr locus, which is a global regulator of multiple
virulence factors [8]. These findings are consistent with
the notion that pathogenesis of most S. aureus infections
cannot be explained by the action of an unique virulence
factor, but by several distinct factors acting in concert
during the infective process [36]. Cna has been associated
with endocarditis [37] and keratitis [38]. Fibronectin-binding
proteins mediate adherence to human airway epithelium
[4]. Clumping factor A (CIfA) plays an antiphagocytic role
in neutrophils and macrophages [39] and is necessary for
infection/pathogenesis in in vivo models of arthritis, sepsis,
and endocarditis [40,41]. Clumping factor B (ClfB) mediates
respiratory infection and attachment to cytokeratins on
nasal epithelial cells [42] and the role of protein A (Spa) in
S. aureus virulence has been demonstrated in models of
sepsis and pneumonia [43]. Although the precise role of
Sdr adhesins in staphylococcal infection is unknown, a
strong correlation between the sdr genes of S. aureus and
certain diseases has been reported. There is a significantly
increased prevalence of the sdrE gene in invasive S. aureus
strains [44], in S. aureus strains responsible for osteomye-
litis [45] and in S. aureus isolates responsible for bone in-
fections [46]. A recent report noted that Eap is associated
with invasive diseases [33].
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Earlier findings suggested a possible relationship between
particular agr groups with the capacity of MRSA to cause
specific illnesses. The agr I and agr 1I strains are associ-
ated with suppurative infections; agr III is associated with
toxic shock syndrome toxin (TSST-1) mediated disease,
and agr IV is associated with exfoliative toxin- and
impetigo-producing strains [47]. Consistent with these
findings, the strains reported in this work were isolated
from suppurative catheter-related infections, or initiating
suppurative catheter-related infections, and carried agrll
(85.7%, n = 18) or agr I (14.3%, n = 3; Table 2).

Most of the strains reported here carried the SCCmec
type IV (57%, n = 12; Table 1), an allele initially considered
to be a characteristic of community-acquired MRSA
(CA-MRSA; [48]). However, MRSA infections in dialysis-
dependent patients have been considered to be mainly
HA (healthcare-associated) according to epidemiologic
classifications [49], and there are several reports of MRSA
strains harbouring SCCmec type IV in HA infections
[30,31,50-52]. The increase in multiple drug-resistant
(MDR) MRSA has become a major challenge for the
treatment of infectious diseases caused by what are
known as superbugs. Strikingly, all the strains reported
here were multidrug resistant -lactamase producers.
They were resistant to 5 to 12 antibiotics. None of the
strains was sensitive to erythromycin, ampicillin, tetra-
cycline, or penicillin (Table 1). On the other hand, only
three strains (14.3%) were resistant to sulfamethoxasole/
Trimethoprim or gentamycin. The high frequency of re-
sistance to these antibiotics may reflect the fact that
physicians of the public health service in Mexico prescribe
all of these antibiotics, which are considered essential
drugs in this sector.

The most frequent combination of antibiotic- and
disinfectant-resistance phenotype/genotype in the MRSA
strains (71.4%, n = 15) was: resistance to erythromycin,
ampicillin, tetracycline, cefotaxime, penicillin, and B-
lactamase production in association with ermA, ermB,
tet(M), tet(K), blaz, qacA, qacB, and qacC genotypes
(Table 1). These strains are not only resistant to five
antibiotics, but also harbour three of the six plasmid-
encoded MDR efflux pumps which mediate resistance to
several biocides such as antimicrobial organic cations,
including intercalating dyes (e.g., acriflavine and ethidium
bromide), and quaternary ammonium compounds (e.g.,
benzalkonium chloride; [53]). Staphylococcal strains resist-
ant to disinfectant have been identified in clinical isolates of
MRSA from China (62%; [54]), Taiwan (55.4%; [55]), and
Hong Kong (42%; [56]). All the erythromycin-resistant
MRSA strains reported here carried the ermA and ermB
genes and two strains (S-73 and S-108) carried the ermC
gene. The msrA and mef genes were not detected in either
strain (Table 1). We did not find discordances between
the presence of erm genes and phenotypic resistance to
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erythromycin, as has been reported in other studies [12,57].
The incidence of ermA genes in our MRSA strains (100%)
is higher than those reported in erythromycin-resistant S.
aureus: 7.7% in Tunisia [12] and 16% in Denmark [58].

All MRSA strains were resistant to tetracycline and
possessed the tet(M) and tet(K) genes (Table 1). Tetracyc-
line is an antibiotic commonly used in Mexico to treat
human and animal bacterial infections, contributing to
the selection and propagation of resistant strains. Tetra-
cycline resistance in S. aureus is encoded by the pT181
plasmid [59] and the et (M) gene can be found in combin-
ation with ermB in the Tn916 transposon. The simultan-
eous presence of these genes has been found frequently in
enterococci, as well as in streptococci and staphylococci
[60]. Consistent with this, all the strains studied here
carried these two genes, suggesting the presence of
these genetic elements in the MRSA we analysed.

The gene aac(69)-le-aph(20)-Ia was detected in three
strains (S-19, S-58, and S-108) that were also resistant to
gentamycin; the vanA and vanB genes were not detected
in any MRSA strain.

The strains with identical PFGE patterns showed the
same phenotypes, genotypes, and spa type, suggesting
that hospital personnel manipulating the haemodialysis
equipment could be the cause of catheter contamination
by these strains.

Our results are relevant because they demonstrate that
MRSA strains isolated from catheter-related infections in
haemodialysis patients express several virulence markers
involved in the adhesion and invasion of RHE. We also
analysed the phenotypes and genotypes of antibiotics and
disinfectant resistance. These results will help define
the incidence of virulence factors in MRSA associated
with catheter-related infections and improve therapies in
haemodialysis patients. In addition, some of the products
of the expressed genes that we detected in this work may
serve as potential antigens for inclusion in a vaccine for
the prevention of MRSA -catheter-related infections.
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