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Abstract 

Background: Urinary retention (UR) is a common urinary system disease can be caused by urinary tract obstruc-
tion with numerous reasons, however, the role of urine microbes in these disorders is still poorly understood. The aim 
of this study was to identify the urine microbial features of two common types of obstructive UR, caused by urinary 
stones or urinary tract tumors, with comparison to healthy controls.

Methods: Urine samples were collected from a cohort of 32 individuals with stone UR, 25 subjects with tumor UR 
and 25 healthy controls. The urine microbiome of all samples was analyzed using high-throughput 16S rRNA (16S 
ribosomal RNA) gene sequencing.

Results: We observed dramatically increased urine microbial richness and diversity in both obstructive UR groups 
compared to healthy controls. Despite different origins of UR, bacteria such as Pseudomonas, Acinetobacter and Sphin-
gomonas were enriched, while Lactobacillus, Streptococcus, Gardnerella, Prevotella and Atopobium were decreased in 
both UR groups in comparison with healthy controls, exhibited an approximate urine microbial community and func-
tional characteristics of two types of obstructive UR. Furthermore, disease classifiers were constructed using specific 
enriched genera in UR, which can distinguish stone UR or tumor UR patients from healthy controls with an accuracy 
of 92.29% and 97.96%, respectively.

Conclusion: We presented comprehensive microbial landscapes of two common types of obstructive urinary reten-
tion and demonstrated that urine microbial features of these patients are significantly different from that of healthy 
people. The urine microbial signatures would shed light on the pathogenesis of these types of urinary retention and 
might be used as potential classification tools in the future.
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Background
Urinary retention (UR) is a series of complex diseases 
defined as the inability to completely empty the bladder 
due to various causes [1–3]. UR affects both men and 
women; however, it presents with a male to female ratio 
of 10:1 [4] due to the high presence of prostate gland 
problems in males [5]. UR can be classified into nonob-
structive and obstructive types according to the cause 
of its formation. Nonobstructive causes include medica-
tions, bladder muscle weakness and nerve problems that 
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interfere with the brain’s ability to receive signals that the 
bladder is full and the body’s ability to function properly 
[6–8]. Conditions such as benign prostatic hyperplasia 
(BPH), urinary tract stones and certain tumors can lead 
to urethral stricture or deformation cause obstruction 
[9]. UR can also be chronic or acute. Chronic UR can 
be a long-lasting and less painful medical condition, still 
resulting in urinary incontinence (UI), a  urinary tract 
infection (UTI), and so on. In contrast, acute UR occurs 
suddenly and causes great discomfort or pain to the 
patient. It is a potentially life-threatening medical condi-
tion that requires immediate emergency treatment, such 
as bladder drainage, urethral dilation or surgery.

Increasing studies have revealed that bacteria not only 
exist in the urine tracts of healthy individuals but play a 
crucial role in the maintenance of microecological bal-
ance [10–13]. In addition, with the advent of culture-
independent methods for detect microbe, amount of 
studies proved that the abnormal urine microbial com-
munity is also closely related with diverse urologic dis-
orders. UTI accounts for a high proportion of these 
population, with the most common microbe being 
Escherichia coli followed by some gram-positive cocci 
and other Enterobacteriaceae [14]. In 2014, Meghan et al. 
used the expanded quantitative urine culture (EQUC) 
techniques observed that nine bacteria (Actinobaculum, 
Actinomyces, Aerococcus, Arthrobacter, Corynebacterium, 
Gardnerella, Oligella, Staphylococcus, and Streptococcus) 
were obviously exited in the urine of Urgency urinary 
incontinence (UUI) patients [15]. This team also revealed 
that the UUI urine microbiome consisted of increased 
Gardnerella and decreased Lactobacillus compared to 
the non-UUI group based on 16S rRNA gene sequencing 
[15]. Recent work by Siddiqui et al. found that more than 
90% of sequencing reads in the urine of interstitial cystitis 
(IC) patients were belong to Lactobacillus, while 60% in 
healthy female urine [16]. Sequencing of bacteria-specific 
16S rDNA in the mid-stream urine of 25 chronic pros-
tatitis/chronic pelvic pain syndrome (CP/CPPS) patients 
and 25 asymptomatic or only had urinary symptoms men 
controls, demonstrated significantly higher phylogenetic 
diversity in the urine microbiota of CP/CPPS patients 
and higher Clostridia count than the control group [17]. 
Dornbier et al. sequenced 16S rRNA of bladder urine and 
urinary stones in 52 patients, suggested that the presence 
of bacterial communities in non-struvite stone was rela-
tively higher than the surrounding urine [18]. Another 
study recruited patients with different stone type found 
that there was a common imbalance between the micro-
biome of urinary stone disease (USD) and different 
pathologies [19]. In addition, a cross-sectional study 
investigated the urine microbiome of asymptomatic bac-
teriuria who had risks from a neurogenic bladder due to 

spinal cord injury and healthy controls, showed altered 
abundance of Lactobacillales, Enterobacteriales and 
other microorganisms and confirmed functional interac-
tions between pathogens and human proteins in subjects 
who initiated host defense [20].

Based on the above information, microorganisms have 
been widely studied in urinary system disease, but the 
potential relationship between the urine microbiome and 
obstructive UR has not yet been fully elucidated. There-
fore, we performed next-generation sequencing of 16S 
rRNA to detect the urine microorganisms and their asso-
ciated functional profile of two common obstructive UR, 
which were caused by stones or tumors, with comparison 
to that of healthy individuals. Disease classifiers were fur-
ther constructed for patients with stone UR and tumor 
UR based on their specific microbial features.

Methods
Study population
All patients with obstructive UR and healthy controls 
were recruited from July 2018 to April 2019 at The First 
Affiliated Hospital of Wenzhou Medical University 
(Wenzhou, China) used for this study. Signed informed 
consent was obtained from each participant, for which 
all procedures and protocols were approved by the Medi-
cal Ethical Committee of the Wenzhou Medical Uni-
versity Ethics Committee. Two types of obstructive UR 
patients in our study were enrolled: one group presented 
with urinary stones, and the other group presented with 
obstructive UR caused by certain tumors in the urinary 
system that resulted in an inability to urinate automati-
cally. The number of cases in the two groups was 34 and 
25, respectively. Patients who had taken antibiotic or pro-
biotic treatment in the past 8 weeks were also excluded. 
Twenty-five healthy individuals volunteered as our con-
trol group, none of whom had a history of UTI or urinary 
system disease. 30  ml fresh urine samples from all par-
ticipants (n = 84) were collected by sterile catheter drain-
age under the strict aseptic procedures and treated in the 
same method after sampling, frozen in a sterile container 
at − 80 °C within 12 h after sampling.

Biochemical indicator detection and routine urine analysis
Blood samples were collected from all subjects to meas-
ure biochemical metabolic parameters. Approximately 
3 ml of whole blood was obtained from each volunteer’s 
blood. Plasma samples for all analyses were obtained 
by centrifugation for 15  min at room temperature at 
3000 rpm and then frozen at − 80 °C for further analysis. 
Baseline biochemical indicators, including serum direct 
bilirubin (DBIL), indirect bilirubin (IBIL), eGFR, alkaline 
phosphatase (ALP) and UA, were assessed quantitatively 
with an automatic biochemical analyzer. Red blood cell 
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count (RBC), white blood cell count (WBC), urobilino-
gen and proteinuria in urine samples were detected by 
routine urine analysis. A positive test is represented with 
at least one “+” sign in the column of urobilinogen or 
proteinuria value in the inspection report. All these clini-
cal values were acquired based on standard procedures.

DNA extraction and 16S rRNA gene amplicon sequencing
Bacterial DNA extraction from these urine samples was 
performed with a TIANamp Stool DNA Kit according to 
the manufacturer’s instructions. To distinguish the con-
taminants and existing microbial community, an unused 
clean sterile catheter was considered a negative control 
of sampling environment and a DNA extraction-negative 
control with no urine added.

The V3–V4 region of 16S ribosomal RNA from the 
extracted DNA samples was amplified with a universal 
forward primer (5′-CCT ACG GGNGGC WGC AG-3′) 
and reverse primer (5′-GAC TAC HVGGG TAT CTA ATC 
C-3′) with a single multiplex identifier and adaptors. To 
exclude contamination during amplification, a PCR-
negative control with no template DNA were processed. 
PCR amplification was then parallel performed in 25  μl 
of 2 × Phanta Max Master Mix, 2  μl of forward primer 
(10 μM), 2 μl of reverse primer (10 μM), 50 μl of ddH2O 
and template DNA. The PCR was conducted under the 
following conditions: 95 °C for 3 min; 25 cycles of 95 °C 
for 30  s, 55  °C for 30  s, and 72  °C for 30  s; and a final 
extension at 72  °C for 5  min. Sample library and Phix 
sequencing control library were added, and the sequenc-
ing reaction was performed on an Illumina MiSeq 
sequencer and yielded 300  bp paired-end reads at high 
depth.

Bioinformatic analysis
To improve the quality of analytical data, this process uti-
lizes the quality control section from our house pipeline 
[21, 22], including to remove those sequences that did 
not contain primers, ambiguous reads, and reads with 
an average quality value < Q20. Only sequences with a 
length longer than 300  bp and two reads with an over-
lap of more than 10  bp were merged using PANDAseq 
(v.2.9) [23]. The Quantitative Insights Into Microbial 
Ecology (QIIME) platform (v.1.9.1) [24] was used to pick 
the closest reference operational taxonomic unit (OTU) 
at a 97% similarity cut-off, and taxonomy assignment 
was then mapped using the Greengenes database (v.13.8) 
[25]. Samples were excluded if their total reads that can 
be annotated to OTUs were less than 8000, and OTUs 
with a number of sequences less than 0.01% of the total 
number of sequences were also discarded. In addition, 
rarefaction was performed with USEARCH [26], which 
randomly sampled 10–100% of the sequences from the 

original sequencing data to observe the number of OTUs 
annotated in each sequence set. Based on the OTU pro-
file, the α-diversity was measured using the taxa richness 
and diversity, and the β-diversity was estimated by com-
puting unweighted and weighted UniFrac [27] distances 
and Bray–Curtis dissimilarity and further visualized 
with principal coordinate analysis (PCoA). Linear dis-
criminant analysis (LDA) for effect size (LEfSe) program 
were performed based on the web services tools Galaxy 
(http://hutte nhowe r.sph.harva rd.edu/galax y/root/index ) 
[28]. The features that were significantly different among 
the three groups were identified by LEfSe with P < 0.05 
(Kruskal–Wallis test) and LDA values > 4 [29]. Phyloge-
netic Investigation of Communities by Reconstruction 
of Unobserved States (PICRUSt) (http://picru st.githu 
b.io/picru st) [30] predicted the gene family abundance 
from the phylogenetic information with an estimated 
accuracy at 0.8, which could be used to impute the urine 
microbiome metagenome from the 16S rRNA sequences. 
We selected level 3 Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database pathways and level 2 Cluster 
of Orthologous Groups (COG) of abundance from the 
predicted functional profiles and filtered the “Function 
Unknown” and “Other” pathways. Only the functions 
and pathways with an average relative abundance > 0.01 
that existed in at least ten samples were considered in the 
analysis.

Statistical analysis
All statistical analyses were performed by R packages 
(version 3.4.3). The permutational multivariate analy-
sis of variance (PERMANOVA) test was performed 
using the [Adonis] function of the “vegan” R package, 
with the maximum number of permutations = 999. 
For comparison of all continuous variables, com-
munity diversity and richness, significantly differ-
ent OTU abundance and significantly different taxon 
abundance at phylum and genus levels were selected 
using the Wilcoxon rank sum test method as previ-
ously described [31, 32]. The resulting p-values were 
adjusted by the Benjamini and Hochberg false dis-
covery rate (FDR). The correlation between different 
genera was calculated with a Spearman correlation 
based on the relative abundance, which was also used 
to study the relationship between different bacteria 
and clinical indicators. For the significantly different 
genus abundance profile, five-fold cross-validation 
was performed five times on a random forest model 
(‘randomForest’ 4.6-12 package). We then obtained 
the average cross-validation error curve from the five 
processed trials. The point with the minimum cross-
validation error plus the standard deviation (SD) at the 
corresponding point was viewed as the cut-off point. 

http://huttenhower.sph.harvard.edu/galaxy/root/index
http://picrust.github.io/picrust
http://picrust.github.io/picrust
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We listed all sets of biomarkers with an error less than 
the cut-off value and chose the set with the smallest 
number of genera as the optimal set. To evaluate the 
discriminatory ability of the random forest model, we 
obtained the average area under the curve (AUC) and 
constructed the receiver operating characteristic curve 
(ROC) 100 times using the ‘ROCR’ R package. The 
mean decrease accuracy (MDA) was assigned to each 
feature based on the fact that removing the feature 
from the prediction model would increase the error 
rate. The probability of disease (POD) value refers to 
the ratio between the number of randomly generated 
decision tress that predicting an individual as a patient 
with stone UR or tumor UR and that of healthy con-
trols. Similarly, the probability of tumor UR index 
is a predictive comparison between the two types of 
obstructive UR. The detailed script of the microbial 
optimal set identification and 100 times ROC analysis 
and POD construction can be found in the supplemen-
tary method and refer to the research published by 
Ren et  al. in 2019 [33]. To explore which bacteria are 
closely related to the main enrichment functions and 
pathways from each group, the Spearman correlation 
method was also adopted.

Results
The OTU profile was obtained after 16S rDNA data analysis
To study the urine microorganisms in obstructive UR, 
we performed 16S sequencing on urine samples from 
84 Chinese participants, including 34 patients with UR 
caused by lithiasis (stone UR), 25 patients with UR due 
to  the urinary tract tumors (tumor UR), and 25 healthy 
controls. These negative controls were not sequenced, 
as the agarose gel electrophoresis showed that no elec-
trophoretic band of microbial DNA, which indicates 
that there was no artifact and contaminant in the envi-
ronment. A total of 727 MB of 300 bp paired-end reads 
were generated after sequenced on the MiSeq plat-
form, and the average number of reads per sample was 
36,072 ± 3376 reads (Additional file  1: Table  S1). Two 
samples from the stone UR group, S18 and S32, were 
removed for their low assigned microbial reads, which 
were less than 8000. Finally, we obtained 310 OTUs from 
25 controls, 32 stone UR and 25 tumor UR individu-
als (Additional file  2: Table  S2). The clinical and demo-
graphic characteristics of all remaining UR patients and 
controls are shown in Table 1. In terms of age, there was 
no significant difference between the stone UR group 
and control group, while the tumor UR group subjects 
were older than the other two groups. There was no 

Table 1 Clinical characteristics of the enrolled participants

DBIL: Direct bilirubin; IBIL: Indirect bilirubin; eGFR: estimated glomerular filtration rate; ALP: Alkaline phosphatase; UA: uric acid; RBC: red blood cell; WBC: white blood 
cell

Clinical indexes Control
(n = 25)

Stone UR
(n = 32)

Tumor UR
(n = 25)

P-value Control vs 
Stone UR

P-value Control vs 
Tumor UR

P-value
Stone UR vs 
Tumor UR

Age (year) 42.92 ± 20.15 52.94 ± 14.40 61.60 ± 13.24 0.054 0.0013 0.034

Gender

 Female 17 (68%) 21 (65.62%) 16 (64%) 1 1 1

 Male 8 (32%) 11 (34.38%) 9 (36%)

DBIL (μmol/L) 2.50 ± 0.70 4.14 ± 2.74 4.56 ± 5.61 0.030 0.25 0.49

IBIL (μmol/L) 4.36 ± 1.85 6.53 ± 2.67 5.46 ± 2.76 0.043 0.58 0.12

eGFR 97.56 ± 23.70 70.63 ± 32.19 40.30 ± 33.32 0.013 0.00010 0.0032

ALP (μ/L) 91.08 ± 30.99 91.70 ± 33.98 144.92 ± 234.24 0.96 0.79 0.81

UA(μmol/L) 317.20 ± 54.00 367.96 ± 103.13 454.01 ± 160.95 0.24 0.039 0.063

RBC (/μL) 9.45 ± 10.60 691.23 ± 1348.03 3489.10 ± 6187.54 0.0015 0.068 0.56

WBC (/μL) 55.45 ± 123.05 2110.97 ± 5085.15 1472.82 ± 3973.84 0.0096 0.0026 0.59

pH

 > 6.5 2 (8%) 12 (37.5%) 7 (28%) 0.27 0.68 0.56

 ≤ 6.5 9 (36%) 17 (53.1%) 16 (64%)

Urobilinogen

 Positive 1 (4%) 3 (9.4%) 2 (8%) 1 1 1

 Negative 10 (40%) 27 (84.4%) 20 (80%)

Proteinuria

 Positive 0 (0%) 20 (62.5%) 16 (64%) 0.00016 0.000086 0.76

 Negative 11 (44%) 10 (31.2%) 6 (24%)
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statistically significant difference in gender among these 
three groups.

Increased urine microbial diversity in stone UR and tumor 
UR individuals
To depict the bacterial richness of each group, we ran-
domly sampled the same amount of reads from each 
sample and performed rarefaction analysis to estimate 
the observed OTUs that could be identified from these 
sequences. As shown in Fig.  1a, all three curves had 
reached plateaus, which indicated that the amount of 
sequenced data were sufficient to detect the microbial 
feature. The acquisition rate of OTUs in control samples 
was strikingly lower than that in stone UR and tumor 

UR groups. Measured by the Shannon index, the urine 
microbial diversity of the stone UR and tumor UR was 
significantly greater than that of healthy controls, how-
ever, there was no significant difference between the 
two UR groups (Fig. 1b, Shannon: controls vs stone UR, 
P= 1.10 × 10−2; controls vs tumor UR, P= 4.57 × 10−5; 
stone UR vs tumor UR, P= 0.29). Likewise, the Simp-
son index of stone UR and tumor UR was significantly 
higher than that of controls (Fig.  1c, Simpson: con-
trols vs stone UR, P = 3.70 × 10−2; controls vs tumor 
UR, P = 1.61 × 10−3; stone UR vs tumor UR, P = 0.28). 
The Chao1 index and Ace index, which measure the 
richness of the community, showed that the rich-
ness of microbiome in two UR groups was significantly 
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higher than that in controls (Fig.  1d, Chao1: controls 
vs tumor UR, P= 1.25 × 10−3; controls vs tumor UR, 
P= 6.68 × 10−5; stone UR vs tumor UR, P= 0.15; Ace: 
controls vs tumor UR, P= 1.18 × 10−3; controls vs tumor 
UR, P= 7.41 × 10−5; stone UR vs tumor UR, P= 0.19). In 
addition, a Venn diagram (Fig.  1e) was used to charac-
terize the overlapped OTUs among the three groups. A 
total of 212 OTUs were shared among the 3 groups, and 
there were 20, 3, and 2 OTUs were unique to the con-
trols, stone UR and tumor UR groups, respectively. It is 
worth noting that there were as many as 42 OTUs shared 
between the stone UR and tumor UR groups.

To further investigate whether there were differences 
among the three groups in the urine microbiota spec-
trum, PCoA was performed based on the unweighted 
UniFrac distances of the 16S rRNA sequence at the 
OTU level. There were differences in β-diversity among 
the three groups, as shown in Fig.  1f (PERMANOVA, 
pseudo-F statistic: 11.88, P= 1.00 × 10−3). In addition, 
differences between each of the two groups were further 
evaluated based on unweighted and weighted UniFrac 
distances and Bray–Curtis dissimilarity (Additional file 3: 
Table  S3). These results showed that both UR groups 
were significantly different from the control group, while 
the microbial compositions of two types of obstructive 
UR could not be separated.

Altered urine microbial communities in stone UR 
and tumor UR
To explore the specific microbial signature of stone UR 
and tumor UR, we evaluated the relative abundance 
of taxa in three groups. Urine microflora composition 
in each sample from three groups at phylum and genus 
levels are shown in the Additional file 4: Figure S1A, D. 
Average composition of bacterial community at the phy-
lum and genus levels are presented in Additional file  4: 
Figure S1B, E, among which the genus level list the top 
35 bacterial and all the remaining low-abundance micro-
flora are combined into “Others”. We found that Proteo-
bacteria was the most abundant phylum in three groups, 
followed by Bacteroidetes (Additional file 4: Figure S1B). 
Compared with controls, stone UR and tumor UR indi-
viduals exhibited a significant increase in the phylum 
Bacteroidetes in urine (Additional file 4: Figure S1C). In 
accordance with the phylum level, the urine microbial 
compositions of the two types of obstructive UR patients 
were similar at the genus level, but both were different 
from that of the control group (Additional file 4: Figure 
S1E, F). It is noteworthy that there was a total of 44 bac-
teria with significant differences between any two of the 
three groups at the genus level (q < 0.01, Wilcoxon rank 
sum test, Fig.  2a). Twelve out of the 44 are displayed 
in Fig.  2b. Elizabethkingia, Proteus, Sphingomonas, 

Pseudomonas, Acinetobacter, Sphingobacterium and 
Myroides were overrepresented in the stone UR and 
tumor UR groups. In contrast, Lactobacillus, Strepto-
coccus, Gardnerella, Prevotella and Atopobium, which 
were decreased in stone UR and tumor UR patients, were 
enriched in controls.

To further confirm the specific bacteria associated 
with obstructive UR, LEfSe was used, which identified 
14 discriminative features, and their relative abundances 
significantly varied between stone UR individuals and 
controls, which was completely consistent with the result 
in Fig.  2a, as evaluated by the Wilcoxon rank sum test 
(Additional file 5: Figure S2A). Curvibacter was a newly 
found bacterium enriched in the tumor UR group, while 
Escherichia was found enriched in control group (Addi-
tional file 5: Figure S2B).

Evaluation of the connections among these differ-
ent genera was performed by a Spearman correlation 
test. Significant positive correlations were found in 
genera enriched obstructive UR, such as for Glucon-
acetobacter and Myroides (R = 0.98, P = 1.24 × 10−60); 
Gluconacetobacter and Sphingobacterium (R = 0.94, 
P = 2.97 × 10−40); Pseudomonas and Comamonas 
(R = 0.85, P = 6.08 × 10−24); and so on. Likewise, positive 
correlations were also found in genera that were enriched 
in control subjects. More interestingly, the bacteria 
enriched in urine of the two obstructive UR patients were 
negatively correlated with those enriched in controls 
(Fig. 2c), such as Myroides and Lactobacillus (R = − 0.71, 
P = 7.93 × 10−14); Sphingobacterium and Lactobacillus 
(R = − 0.68, P = 3.45 × 10−12); Elizabethkingia and Atopo-
bium (R = − 0.46, P = 1.44 × 10−5); and so on. We further 
explored the association of the urine microbiome with 
clinical manifestations (Fig.  2d) and found that there 
were some significantly negative correlations between 
the estimated glomerular filtration rate (eGFR) level and 
the microorganisms that were enriched in obstructive UR 
patients, such as Pseudomonas, Methylobacterium, Eliza-
bethkingia, and so on. On the contrary, positive correla-
tions were observed between the uric acid (UA) level and 
the genera that were enriched in obstructive UR patients, 
such as Pseudomonas, Stenotrophomonas, Sphingomonas, 
and so on.

Classification of disease status using bacterial genus-level 
biomarkers
To explore the potential diagnostic value of the urine 
microbiome in stone UR and tumor UR, we constructed 
a random forest classifier to discriminate urinary reten-
tion samples from control samples. We only selected the 
microorganisms that were significantly enriched in stone 
UR and tumor UR to construct the classification mod-
els. Finally, 30 and 34 genera signatures were selected 
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Fig. 2 Striking genus differences in urine microbiota composition between stone UR or tumor UR and controls. a The 44 different genus profiles 
of average relative abundance across three groups. C: control; S: stone UR; T: tumor UR. The dark green star indicates q < 0.01, light green star 
indicates q < 0.05, very light green star indicates p < 0.05, and gray star indicates q ≥ 0.05. b The relative abundance of 7 genera abundant in stone 
UR and tumor UR and 5 genera enriched in controls were exhibited with a box plot, respectively. c A network of Spearman’s correlation of the 
44 significantly different genera among three groups. Blue edges, Spearman’s correlation coefficient < − 0.45; red edges, Spearman’s correlation 
coefficient > 0.45. d Heatmap of Spearman’s rank correlation coefficients of the relative abundance of different urine microbiota constituents at the 
genus level and 7 clinical indices. Genera that were enriched in controls are shown in blue. These asterisks indicate that the correlation is significant. 
GFR: glomerular filtration rate; ALP: alkaline phosphatase; DBIL: direct bilirubin; IBIL: indirect bilirubin; WBC: white blood cell count; UA: uric acid; RBC: 
red blood cell count
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for further analysis for stone UR and tumor UR, respec-
tively. The cross-validation error curve distribution was 
obtained from five trials of five-fold cross-validation. 
Both 8 biomarkers were selected as the optimal marker 
set to distinguish stone UR or tumor UR from the control 
group (Additional file 6: Figure S3A, B). The performance 
of these optimal marker models was assessed by 100 ran-
dom ROC analyses, and the average AUC value achieved 
92.29% between the stone UR and control group and 
97.96% between the tumor UR and control group (Fig. 3a, 
d). The average MDA for the random 100 times of these 
optimal markers are shown in Fig. 3b and e. These results 
showed that 7 out of 8 bacteria were identical, which 
were used to distinguish stone UR or tumor UR from the 

control group, including Mycobacterium, Agrobacterium, 
Ralstonia, Delftia, Acinetobacter, Methylobacterium and 
Sphingomonas. Here, we further validated our previous 
finding that stone UR and tumor UR have approximate 
urine microbial background although they result from 
different obstruction causes. The POD value was signifi-
cantly increased in stone UR group versus control group, 
and a similar trend was also found in tumor UR group 
(Fig. 3c, f; P< 2.2× 10−16 for both comparisons).

To select the optimal marker set of stone UR and tumor 
UR based on the urine microbiome, we used the genera 
with P < 0.05 which were measured by the Wilcoxon rank 
sum test. Only Sediminibacterium was selected from 
two different bacteria as the optimal marker after five 
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repeated five-fold cross-validation trials Additional file 6: 
Figure S3C). The average AUC value was 58.44% after 
running 100 random ROC analyses (Additional file  6: 
Figure S3D). The MDA of Sediminibacterium is shown in 
Additional file 6: Figure S3E. The probability of tumor UR 
was significantly higher than stone UR in the tumor UR 
group (stone UR vs tumor UR, P= 1.00 × 10−15), which 
was consistent with these clinical data (Additional file 6: 
Figure S3F).

Microbial functional altered in stone UR and tumor UR
To explore whether the function of the urine microbiome 
of stone UR and tumor UR has changed, we used PIC-
RUSt to predict the functional components of the 16S 
rRNA gene sequencing data of all samples. The OTU 
profile of these three groups was aligned to level 3 of the 
KEGG database, and COG abundance was calculated 
(Additional file  7: Table  S4, Additional file  8: Table  S5). 
PCOA based on the KEGG pathways showed that the 
control group was strikingly separated from stone UR 
and tumor UR groups (Fig. 4a; PERMANOVA, pseudo-
F statistic: 13.05, P= 1.00 × 10−3), which was consistent 
with the result based on COG categories (Additional 
file  9: Figure S4A; PERMANOVA, pseudo-F statistic: 
11.97, P= 1.00 × 10−3). We found that both obstruc-
tive UR groups were significantly different from control 
group, while the functional structure between stone UR 
and tumor UR was similar (Fig. 4b). Twenty-five KEGG 
pathways were differentially enriched between each two 
of the three groups (adjusted p-value < 0.01, Wilcoxon 
rank sum test). There were 14 pathways involved in 
membrane transport, signal transduction, genetic infor-
mation processing, carbohydrate metabolism and nucle-
otide metabolism, such as that for purine and methane, 
which were significantly reduced in the stone UR group 
and tumor UR group. We observed 11 pathways that 
were increased in the stone UR and tumor UR groups, 
including amino acid metabolism and energy metabo-
lism. Intriguingly, the abundance of pathways associ-
ated with membrane transport functions, such as ABC 
transporters and the phosphotransferase system (PTS), 
was negatively correlated with these genera enriched in 
stone UR and tumor UR groups. In accordance with the 
KEGG function result, most of the energy metabolism, 
carbohydrate metabolism and amino acid metabolism 
pathways had changed in the COG annotation (Addi-
tional file 9: Figure S4B). There was a strong positive cor-
relation between the significantly enriched functions in 
both obstructive UR groups and their enriched genera 
(Fig.  4c). For instance, Pseudomonas, Acinetobacter and 
Sphingomonas were significantly related to valine, leucine 
and isoleucine degradation and glycine, serine and threo-
nine metabolism. These amino acids may be the product 

of bacteria as Corynebacterium glutamicum can produce 
amino acids on a large scale reported previously [34]. 
ABC transporters, the PTS, transporters and other ion-
coupled transporters that were significantly enriched in 
controls were mainly negatively correlated with patients 
with UR microbial features. The same trend was found in 
the COG function analysis with these significantly differ-
ent bacteria (Additional file 9: Figure S4C).

Discussion
This current study aims to analyze the microbial spec-
trum of two common types of obstructive urinary reten-
tion using 16S rRNA gene sequencing technology, a 
widely recognized technique that can depict the land-
scape of microorganisms. Our results showed that the 
microbial diversity of stone UR and tumor UR patients 
increased significantly compared with that of controls, 
while there was no obvious difference between these two 
types of obstructive UR. Changes in microbiome diver-
sity of urinary system disorders have not been consist-
ently. Previous studies have found increased microbial 
diversity in UUI [35] and chronic prostatitis patients [17] 
and decreased bacterial diversity in subjects with IC [16]. 
In addition, some urinary system diseases, such as over-
active bladder [36], had no significant changes in micro-
bial diversity. The increased community richness and 
diversity of the urine microbiome in stone UR and tumor 
UR groups is consistent with previous findings [37, 38]. 
Although the urine microbiota profile differs among indi-
viduals, which mainly due to genetic background, age, 
dietary habits and lifestyle, samples with same clinical 
phenotype was clustered in β-diversity analysis for their 
common urine microbial composition.

We observed a dramatic shift in the components of 
the urine microbiome in patients with two types of 
obstructive UR, however the urine microbiota feature 
of the stone UR and tumor UR patients were similar. A 
gram-negative genus, Pseudomonas, is the second most 
common infection in hospitalized patients. In addition, 
Pseudomonas is known to be associated with a wide 
range of urinary tract diseases [39–41]. In 2015, Barr-
Beare et al. not only detected Pseudomonas by sequenc-
ing from a urinary stone but also isolated this bacterium 
from stone culture [39]. Used 454 sequencing technology, 
Xu et  al. detected that Pseudomonas was the dominant 
genus in some patients with urothelial carcinoma [42]. 
This finding agreed with previous studies that demon-
strated that Pseudomonas spp. were enriched in stone 
UR and tumor UR patients. Acinetobacter is a complex 
genus, the virulence factors of Acinetobacter baumannii 
have been proofed to be involved in epithelial cell adhe-
sion and invasion, biofilm formation [43]. A study profil-
ing the urinary microbiome in man with calcium-based 
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kidney stone by Xie et  al., which shown the most dif-
ferentially represented taxa at genus level was Acine-
tobacter and enrichment in kidney stone patients [44]. 
Furthermore, Acinetobacter was an abundant genus in 
urothelial carcinoma patients and in male patients with 
bladder cancer in China [42, 45]. Sphingobacterium and 
Sphingomonas, which were also elevated in the tumor 

UR group, are morbidity-inducing urine bacteria that 
cause bladder cancer, prostate cancer and BPH [38, 46]. 
In addition, we found two unusual bacteria. The first is 
Myroides, which was the cause of an outbreak of UTI in 
a Tunisian hospital [47]. Almost all patients infected with 
Myroides spp. had a urinary stone or urinary neoplasms. 
Elizabethkingia was the second genus, and in 2017, a 
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25-year-old woman was the first individual reported to 
have a UTI caused by Elizabethkingia and to have diffi-
culty urinating [48]. On ground of our findings and previ-
ous reports, we assume that there is a strong association 
between obstructive UR and UTI, but it is not clear 
whether there is a causal relationship between them and 
what role microorganisms play. Furthermore, our results 
also indicated that a complex bacterial community domi-
nated by Lactobacillus, Prevotella, Streptococcus and 
Gardnerella exists in the urinary tract of healthy people. 
These microorganisms have been speculated in previ-
ous studies to be mandatary to maintain a healthy status 
in the urinary system [11, 13, 20, 49, 50]. Lactobacillus 
plays an important role in the human body because it 
can protect the host from potential pathogens and main-
taining urinary health [51]. Streptococcus has been found 
repeatedly in the urine of healthy men [52, 53]. A 2018 
study showed that increased of Streptococcus in healthy 
bladder midstream urine versus the bladder cancer [37]. 
In addition, the microbial population profile of another 
urologic malignancy, prostate cancer, also found signifi-
cant enrichment of Streptococcus in the non-tumor tissue 
[54]. Xu et  al. detected the abundance of Streptococcus 
was near zero in most control patients but significantly 
elevated in urothelial carcinoma patients, however, which 
is the opposite of what was observed in our study [42]. 
Therefore, needed more research to elucidate the asso-
ciation between Streptococcus and the cancer or health 
status. It is worth mentioning that these beneficial micro-
bial enriched in control group were negatively correlated 
with the pathogenic bacteria in the stone UR and tumor 
UR groups but positively correlated internally. Of inter-
est, products of some bacteria might inhibit the activity 
of others. For example, lactic acid produced by Lactoba-
cillus showed good inhibition activity against E. coli [55].

Stone UR and tumor UR microbial anomalies were 
characterized by altered relative abundance in 44 genera. 
The combination of the optimal marker taxa that dis-
tinguished stone UR or tumor UR patients from healthy 
controls had high accuracies of 92.29% and 97.96%, 
respectively. It suggests that these differentially present 
microbial communities may be a potentially effective tool 
for predicting stone UR or tumor UR, and further com-
bination with clinical information may enhance the iden-
tification capability. Further detailed studies are needed 
to obtain better classifiers to distinguish stone UR and 
tumor UR in the future.

Along with the altered composition of the urine micro-
biome, their functional change was also predicted by 
PICRUSt. Biosynthesis and metabolism of some carbohy-
drates and nucleotides were depleted in obstructive UR, 

such as amino and nucleotide sugar metabolism, fructose 
and mannose metabolism and glycolysis/gluconeogene-
sis, which are essential for the host. Pathway analysis also 
showed a decline in the capacity for membrane transport 
and signal transduction, indicating impaired membrane 
permeability or ureteral obstruction. Ureteral obstruc-
tion leads to a gradual decrease in renal excretion with 
decreased eGFR levels [56]. In our cohort, the majority of 
pathogenic genera in stone UR and tumor UR were nega-
tively correlated with eGFR levels, suggesting a potential 
link between these microbes and disease severity. Simi-
larly, many pathogens of UR were significantly positively 
correlated with UA content. Clinical knowledge suggests 
that the elevated UA content is a result of host purine 
metabolism disorder. Purine metabolism was reduced 
in patients with obstructive UR, as expected, hinting at 
a potential role of urine microbes in causing nucleotide 
metabolism dysfunction. Although the purine metabo-
lism ability was weakened in two UR groups, UA con-
tent could not be excreted due to obvious impairment 
of membrane transport, which showed that UA levels of 
these two obstructive UR patients were higher than those 
of control individuals (Table 1).

There are still several limitations in our study to be 
addressed. First, it is difficult to determine the causal 
relationship between the microflora and obstructive UR. 
Therefore, prospective follow-up studies with larger sam-
ple sizes and experimental studies are needed to detect 
the role of the microbiome in obstructive UR progres-
sion and development. Second, our pathway and func-
tion characterizations were inferred by PICRUSt based 
on the 16S rRNA sequence. In the future, the combina-
tion of metagenomics and metaproteomics may reveal 
more accurate microbial community composition and 
function.

Conclusions
In summary, we characterized the microbiome profiles 
of two obstructive UR, stone UR and tumor UR, in com-
parison with control subjects. Our study suggested that 
the urine microbiome may be associated with obstruc-
tive UR, while the cause-effect relationship remains to 
be elucidated. Some bacteria can be used to discriminate 
obstructive UR patients from healthy individuals with 
high accuracy. A better understanding of the role of the 
urinary microflora in obstructive UR would help urolo-
gists make more sensible choices in clinical identifica-
tion and formulate personalized microbial intervention 
measures.
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