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β-lactamases but not MBLs [2], while aztreonam (ATM) 
is stable to the hydrolysis by MBLs [3, 4]. The combina-
tion of aztreonam-avibactam (ATM-AVI) has activity 
against Enterobacter isolates producing either serine-
based β-lactamases or MBLs or both and has been used 
to treat carbapenem-resistant Enterobacter [5, 6]. How-
ever, ATM-AVI resistance has also emerged [7–9] but the 
mechanism for resistance remains largely unknown in 
Enterobacter. In this study, we report a novel mechanism 
mediating reduced susceptibility to ATM-AVI but with 
increased susceptibility to cephalosporins as tradeoff.

An ATM-AVI-resistant mutant was obtained from 
a carbapenem-resistant Enterobacter mori clinical 
strain
Carbapenem-resistant Enterobacter strain 020047 was 
recovered from urine of a patient in Sichuan, China, in 
2016. Genome sequence of 020047 was obtained using a 
HiSeq X10 sequencer (Illumina, San Diego, CA). Strain 

Enterobacter, a genus of the family Enterobacteriaceae, is 
a group of important human pathogens [1]. Carbapenems 
are the major choices to treat severe infections caused 
by Enterobacter, but carbapenem-resistant Enterobac-
ter has been increasingly reported [1]. Production of 
metallo-β-lactamases (MBLs) such as NDM, VIM, and 
IMP is a major mechanism mediating carbapenem resis-
tance in Enterobacter [1]. Avibactam (AVI) is a non-β-
lactam β-lactamase inhibitor able to inhibit serine-based 
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Abstract
Aztreonam-avibactam is an important option against Enterobacterales producing metallo-β-lactamases (MBLs). 
We obtained an aztreonam-avibactam-resistant mutant of an MBL-producing Enterobacter mori strain by induced 
mutagenesis. Genome sequencing revealed an Arg244Gly (Ambler position) substitution of SHV-12 β-lactamase in 
the mutant. Cloning and susceptibility testing verified that the SHV-12 Arg244Gly substitution led to significantly 
reduced susceptibility to aztreonam-avibactam (MIC, from 0.5/4 to 4/4 mg/L) but with the loss of resistance to 
cephalosporins as tradeoff. Arg244 of SHV involves in the binding of avibactam by forming an arginine-mediated 
salt bridge and is a critical residue to interact with β-lactams. Molecular modeling analysis demonstrated that 
the Arg244Gly substitution hindered the binding of avibactam to SHV with higher binding energy (from − 5.24 
to -4.32 kcal/mol) and elevated inhibition constant Ki (from 143.96 to 677.37 µM) to indicate lower affinity. This 
substitution, however, resulted in loss of resistance to cephalosporins as tradeoff by impairing substrate binding. 
This represents a new aztreonam-avibactam resistance mechanism.
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020047 was identified as Enterobacter mori based on the 
draft genome using FastANI v1.33 [10]. Antimicrobial 
resistance genes were identified using ResFinder (http://
genomicepidemiology.org/). Strain 020047 has five 
β-lactamase-encoding genes, i.e., blaTEM−1B encoding a 
broad-spectrum β-lactamase, blaCTX−M−3 and blaSHV−12 
encoding extended-spectrum β-lactamases (ESBLs), and 
two MBL-encoding genes blaIMP−4 and blaNDM−1. MIC 
of ATM-AVI was 1/4 mg/L (Table 1) as determined using 
broth microdilution according to the Clinical and Labo-
ratory Standards Institute (CLSI) [11]. We conducted 
multi-step mutant selection experiments as described 
previously [12] to examine whether 020047 could develop 
resistance to ATM-AVI and if yes, to investigate the resis-
tance mechanism. Briefly, 108  cfu of strain 020047 was 
inoculated in 2 mL LB broth (Sigma; St. Louis, MO) con-
taining 0.5/4 mg/L ATM-AVI (0.5 × MIC) and 0.5 mg/L 
5-azacytidine (Mce; Shanghai, China), an anticancer drug 
to increase the mutation rate of bacteria through induc-
ing the SOS reaction [12]. After overnight culture, a 100-
µl aliquot was streaked on a LB agar plate with doubled 
concentrations of ATM from 1  mg/L and fixed 4  mg/L 
AVI and 0.5 mg/L azacytidine and a colony was collected. 
The procedure from overnight culture was repeated in 
each day until ATM reached 16 mg/L as colonies grew in 
the presence of 8/4 mg/L ATM-AVI were obtained but no 
colonies could grow in ATM-AVI at 16  mg/L or higher 
concentrations. An ATM-AVI-resistant mutant, assigned 
020047R here, was obtained from the LB agar plate 
containing 8/4  mg/L ATM-AVI. MIC of ATM-AVI for 

020047R was 16/4  mg/L (Table  1) as determined using 
CLSI broth microdilution [11].

A nonsynonymous mutation was identified in 
blaSHV−12 in the ATM-AVI- resistant mutant
Like strain 020047, 020047R was also subjected to whole-
genome sequencing using HiSeq X10. Reads were assem-
bled using SPAdes v3.14.0 [13] and the genome sequence 
was annotated using Prokka v1.13 [14]. Single nucleotide 
polymorphisms (SNP) between 020047 and 020047R 
were called using Snippy v4.6.0 (https://github.com/tsee-
mann/snippy) and were filtered to remove recombination 
using Gubbins v2.4.1 [15]. Compared to 020047, 020047R 
has five SNPs with three in non-coding regions. One SNP 
was present in a gene encoding a transposase of the Tn3 
transposon family resulting in a Thr to Ala amino acid 
substitution. The remaining SNP occurred in blaSHV−12 
(C715G, numbered from the ATG start codon) resulting 
in an Arg to Gly amino acid substitution at position 239 
(Ambler position 244, Arg244Gly). By Blast, it becomes 
evident that among all reported naturally-occurring 
SHV β-lactamases the Arg244Gly substitution has not 
been found before. We then focused on the mutation of 
blaSHV−12 and performed cloning experiments.

The Arg244Gly mutation of blaSHV−12 mediates 
reduced susceptibility to ATM-AVI but with loss of 
resistance to cephalosporins as tradeoff
The − 10, and − 35 boxes within the promotor of 
blaSHV−12 were predicted using BPROM (http://www.
softberry.com/berry.phtml?topic=bprom&group=prog
rams&subgroup=gfindb). Together with the promoter 
sequence, blaSHV−12 in 020047 and its variant (assigned 
blaSHV−12R here) in 020047R were amplified with prim-
ers SHV-12-PROF (5’-AACCATATGATGATAAGTT-
TATCACCACCG, with restriction site is underlined) 
and SHV-12-PROR (5’-AACGAATTCAATACAAT-
CAGGTGGCCAC) using PrimeSTAR Max DNA Poly-
merase (Takara; Dalian, China). Purified amplicons and 
the vector pET-28a(+) (Miaolingbio; Wuhan, China) 
were restricted by NdeI and EcoRI (Takara, Dalian, 
China), respectively, and were ligated using T4 ligase 
(Takara) to construct pET-SHV12 and pET-SHV12R. 
pET-SHV12 and pET-SHV12R were separately trans-
formed into Escherichia coli DH5α using the chemi-
cal method [16]. Potential transformants were selected 
on LB agar plates containing 50  mg/L kanamycin. The 
presence of blaSHV−12 or blaSHV−12R in the correspond-
ing transformant DH5::SHV-12 and DH5::SHV-12R was 
verified by PCR using Primers T7 (5’-TAATACGACT-
CACTATAGGG) and T7ter (5’-TGCTAGTTATTGCT-
CAGCGG) and subsequent Sanger sequencing.

MICs of cephalothin (CEP), cefuroxime (FUR), cefo-
taxime (CTX), piperacillin-tazobactam (PIP-TAZ), 

Table 1 MICs (mg/L) of antimicrobial agents against strains in 
this study
Antimicro-
bial agents

020047 020047R DH5α::SHV-12 DH5α::SHV-
12R

CEPa > 1024 > 1024 1024 16
FUR 1024 1024 128 4

CTX > 1024 1024 32 0.06

PIP-TAZ > 512/4 > 512/4 256/4 2/4

CAZ > 1024 > 1024 512 4

CAZ-AVI > 512/4 > 512/4 0.25/4 0.25/4

IMP 16 16 0.12 0.12

ATM 2048 256 512 32
ATM-AVI 1/4 16/4 0.5/4 4/4

ATM-CLA 32/16 32/16 1/0.5 2/1

ATM-TAZ > 512/4 256/4 128/4 2/4

ATM-SUL 256/128 256/128 32/16 8/4
CEP, cephalothin; FUR, cefuroxime; CTX, cefotaxime; PIP-TAZ, piperacillin-
tazobactam; CAZ, ceftazidime; CAZ-AVI, ceftazidime-avibactam; IMP, 
imipenem; ATM, aztreonam; ATM-AVI, aztreonam-avibactam; ATM-CLA, 
aztreonam-clavulanic acid; ATM-TAZ, aztreonam-tazobactam; ATM-SUL, 
aztreonam-sulbactam

Those reached the breakpoints to define resistance are highlighted in bold. The 
breakpoint of ATM-AVI, ATM-CLA, ATM-TAZ, and ATM-SUL to define resistance 
were according to that of ATM.
aUsing breakpoints of cefazolin for infections other than uncomplicated urinary 
tract infection [11]
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ceftazidime (CAZ), ceftazidime-avibactam (CAZ-AVI), 
ATM, ATM-AVI, ATM-clavulanic acid (ATM-CLA), 
ATM-sulbactam (ATM-SUL), ATM-tazobactam (ATM-
TAZ), and imipenem (IMP) against strain 020047, 
020047R, DH5::SHV-12 and DH5::SHV-12R were deter-
mined using the CLSI broth microdilution [11]. The 
breakpoints of ATM defined by CLSI were applied for 
ATM-AVI, ATM-CLA, ATM-SUL, and ATM-TAZ. MIC 
of ATM-AVI against DH5::SHV-12R was 4/4  mg/L, 
which was 8-fold higher than DH5::SHV-12 (0.5/4 mg/L, 
Table  1). However, compared to those against 
DH5::SHV-12, MICs of cephalosporins were 32- (FUR) to 
512-fold (CEP) lower and that of ATM was 16-fold lower 
against DH5::SHV-12R (Table 1). The above findings sug-
gest that the Arg244Gly substitution of SHV-12 mediates 
reduced susceptibility to ATM-AVI but leads to loss of 
resistance to cephalosporins as tradeoff.

The Arg244Gly substitution of SHV-12 altered 
the AVI binding pocket and impaired affinity for 
cephalosporins and ATM
The Arg244Gly substitution occurs in the region to 
form a β sheet but does not alter the predicted second-
ary structure of SHV-12 (Fig. 1). The enzyme conforma-
tion may change during the process of docking to ligand 

and there is no crystal structure of SHV-12 β-lactamase 
bound to AVI in the Protein Data Bank (PDB). The struc-
ture of SHV-12 and SHV-12R were predicted using the 
modelling tool SWISS-MODEL (https://swissmodel.
expasy.org/interactive) based on the crystal structure of 
SHV-1 β-lactamase bound to AVI (PDB: 4ZAM) as tem-
plate. The ligand, water molecules of SHV-12 and SHV-
12R were removed using Pymol (Schrödinger, www.
pymol.org). SHV-12 and SHV-12R were then prepared 
by adding hydrogen atoms with gasteiger charges by 
AutoDockTools of MGLTools 1.5.6 [17]. The structure of 
AVI (PubChem CID: 9,835,049) was obtained from the 
PubChem (https://pubchem.ncbi.nlm.nih.gov/). Ligands 
were regarded as flexible during docking in default set-
tings using AutoDockTools. AutoGrid and genetic algo-
rithm [18] were used to evaluate the binding energies and 
intermolecular forces. Grid box was set as 155 × 126 × 126 
with a 0.375 Å grid point spacing and default docking 
parameters. Molecular docking of SHV-12 and AVI was 
modeled using AutoDock 4.2.6 [17]. The conformation of 
docking that contained part of known binding sites such 
as Ser70 [19] (see below) and had lower binding energy 
and lower inhibition constant Ki (lower Ki means higher 
affinity), which were determined using AutoDock 4.2.6, 

Fig. 1 Secondary structure of SHV-12 and SHV-12R. The alignment of amino acid sequences and the prediction of secondary structures were performed 
using ENDscript 2 [30]. Secondary structure elements, α helixes, β sheets, and 310-helixes (representing by η), are indicated. β-strands are rendered as ar-
rows, and strict β-turns are shown as TT letters
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was selected. Docking structure was visualized using 
Pymol (www.pymol.org).

Ser70 (Ambler position, hereinafter) is the active site 
to hydrolyze β-lactams of SHV-1, SHV-12 and SHV-12R 
by querying the UniProt database (https://www.uniprot.
org/). In previous structure studies [20, 21], Ser70 is 
covalently bonded to AVI and Arg244 in SHV-1 formed 
an arginine-mediated salt bridge interacting with the sul-
fate moiety of AVI. In addition, Arg244 and several other 
amino acids (Ser130, Asn132, Glu166, Thr167, Asn170, 
Thr235, and Ala237) of SHV-1 formed hydrogen bonds 
to AVI (Fig. 2 panel A). In strain 020047R, Arg244 sub-
stituted by a shorter Gly239 results in transformation of 
AVI binding (Fig. 2 panel B), hindering the binding of AVI 
to SHV-12R. Analysis of binding energy showed that the 
estimated binding energy increased from − 5.24 kcal/mol 
in SHV-12 to -4.32 kcal/mol in SHV-12R. The inhibition 
constant Ki also increased from 143.96 µM in SHV-12 to 

677.37 µM in SHV-12R, suggesting lower affinity to AVI. 
In addition, the pocket accommodating AVI (Fig. 2 panel 
C) vanished from SHV-12R in the presence of the Arg-
244Gly substitution (Fig. 2 panel D).

Arg244 of class A β-lactamases including SHV enzymes 
has been well characterized and is a critical residue to 
interact with β-lactams and β-lactamase inhibitors, and 
is involved in recognition, positioning, and turnover of 
substrates in the active site [22–25]. It has been shown 
that various amino acid substitutions of Arg244 including 
Arg244Gly cause that SHV-1 loses the activity of cepha-
losporinases due to the impaired affinity and are unable 
to hydrolyze cephalosporins [23, 25]. The hydrolysis of 
ATM is also reduced but to a lesser extent in the pres-
ence of such substitutions of Arg244 [25]. Instead of a 
carboxylate group in cephalosporins, ATM has a sulfonic 
acid group bonded to the lactam ring and Arg244 has 
a weaker interaction with the sulfonic group than that 

Fig. 2 Binding of AVI to SHV-12 and its variant SHV-12R. The residues interact with AVI are depicted in blue. The amino acid substitution is s depicted 
in purple and the rest of the protein is in green. Molecular docking of SHV-12 and AVI was modeled using AutoDock 4.2.6 [17]. Docking structure was 
visualized using Pymol (www.pymol.org). Panel A and C, hydrogen bonds of AVI to SHV-12. Ser70 is the active site to hydrolyze β-lactams. Arg244 and 
several other amino acids, e.g., Ser130, Asn132, and Thr235, formed hydrogen bonds (shown as a cyan region in panel C) to AVI. Panel B and D, hydrogen 
bonds of AVI to SHV-12R. The Arg244Gly substitution, indicated by an arrow in panel D, altered hydrogen bonds (shown as a cyan region in panel D) of 
AVI compared to that in SHV-12 (panel A)
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with carboxylate [25]. Although the hydrolysis of ATM 
by SHV-12R was reduced, it did not completely compen-
sate the effect of the decreased binding of AVI to inhibit 
the enzyme. As such, the susceptibility of ATM-AVI was 
significantly reduced for strains producing SHV-12R. By 
contrast, the reduced hydrolysis of cephalosporins could 
compensate impaired binding of AVI to make MICs of 
CAZ-AVI unaltered. However, it is worth to point out 
that CAZ-AVI alone has no activity against strain 020040 
due to the production of MBLs.

Notably, amino acid substitutions of Arg244 have been 
well described in TEM β-lactamases including TEM-79 
(an Arg244Gly variant of TEM-1) [26] and such substitu-
tions lead to resistance to the inhibition of CLA [27, 28]. 
In the presence of 4 mg/L ATM, However, the activity of 
ATM-CLA against SHV-12R and SHV-12 was not signifi-
cantly different (Table 1). Previous studies [23, 29] have 
found that different amino acid substitutions of Arg244 
of SHV-1 obtained by mutagenesis exhibit varied and 
even contradictory impact on the inhibition of CLA. Par-
ticularly, the Arg244Gly substitution of SHV-1 did not 
significantly (less than four-fold) alter such inhibition [23, 
29]. SHV-12R led to a four-fold lower MIC of ATM-SUL 
(32/4 mg/L) comparing with SHV-12 (Table 1) and this is 
consistent with the previous finding of 8-fold increased 
inhibition of SUL against SHV-1 with the Arg244Gly 
substitution [29]. The impact of Arg244Gly substitution 
of SHV β-lactamases on TAZ has not been evaluated 
before, but in this study SHV-12R led to a 64- or 128-fold 
lower MIC of ATM-TAZ and PIP-TAZ comparing with 
SHV-12 (Table 1). The above findings highlight that the 
impact of Arg244Gly substitution varies according to the 
β-lactamases (e.g., TEM or SHV) and the β-lactamase 
inhibitors (AVI, CLA, SUL, and TAZ).

We are aware of limitations of this study. First, multi-
ple colonies grew on the agar plate containing 8/4 mg/L 
ATM-AVI and we only picked up a single colony as the 
representative for study. We also did not repeat the muta-
tion experiments. We were therefore unable to uncover 
the presence of other potential mechanisms for mediat-
ing ATM-AVI resistance and to determine the reproduc-
ibility of the Arg244Gly substitution of SHV-12 to form 
SHV-12R. Second, we did not determine enzyme kinet-
ics parameters for SHV-12R in comparison with SHV-12, 
which could provide complementary data to phenotypic, 
genetic and structural analyses.

Despite the limitations, we identified an amino acid 
substitution at Arg244 of SHV-12 leading to reduced 
susceptibility to ATM-AVI, a combination against MBL-
producing Enterobacterales but with the expense of los-
ing the ESBL phenotype against cephalosporins. This is 
the first time to the best of our knowledge that a muta-
tion of blaSHV is associated with reduced susceptibility to 
ATM-AVI.
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