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Enteric alpha defensins in norm and pathology
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Abstract

Microbes living in the mammalian gut exist in constant contact with immunity system that prevents infection and
maintains homeostasis. Enteric alpha defensins play an important role in regulation of bacterial colonization of the
gut, as well as in activation of pro- and anti-inflammatory responses of the adaptive immune system cells in lamina
propria. This review summarizes currently available data on functions of mammalian enteric alpha defensins in the
immune defense and changes in their secretion in intestinal inflammatory diseases and cancer.
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Introduction
Defensins are short, cysteine-rich, cationic peptides
found in vertebrates, invertebrates and plants, which
play an important role in innate immunity against bac-
teria, fungi, protozoa, and viruses [1]. Mammalian
defensins are predominantly expressed in epithelial cells
of skin, respiratory airways, gastrointestinal and geni-
tourinary tracts, which form physical barriers to external
infectious agents [2,3], and also in leukocytes (mostly
neutrophils), which kill microbes that have already pene-
trated the body [4]. Mature defensins contain six
cysteine residues (Cys1-6) forming three intramolecular
disulphide bonds. Depending on the bonds arrangement
they are classified into alpha, beta and theta subfamilies.
Alpha defensins secreted by leukocytes and intestinal
Paneth cells of mammals [5] contain disulfide bridges
between 1-6, 2-4, and 3-5 cysteine residues, while beta
defensins produced by epithelial cells and leukocytes of
most multicellular organisms [6] are distinguished by
pairing of cysteine residues 1-5, 2-4, and 3-6 [7]. Mem-
bers of the rare theta defensin subfamily (circular mini-
defensins) are expressed only in leukocytes and bone
marrow cells of monkeys. They are produced by the
head-to-tail ligation of two different C-terminally trun-
cated pro-alpha defensins (demidefensins), each nine
amino acids long [8].
The tertiary structure of mature alpha defensins con-

sists of a triple-stranded b-sheet with two b-turns [9].
An amphipathic character of the peptide (i.e., mostly

hydrophobic structure with a positively charged hydro-
philic part) is essential for the insertion into the micro-
bial membrane and the formation of a pore leading to
membrane permeabilization and lysis of the microbe
[10]. Initial recognition of numerous microbial targets is
a consequence of electrostatic interactions between the
defensins arginine residues and the negatively charged
phospholipids of the microbial cytoplasmic membrane
[2,5]. However, the precise mechanism of target recogni-
tion and its putative effectors have not been studied in
sufficient detail for all known defensin molecules [11].
The most sensitive targets of enteric alpha defensins are
Gram-positive and Gram-negative bacteria [12]. Though
viruses usually cannot be cleared by the innate immune
system, some defensins are able to suppress replication
of human immunodeficiency virus [13].
Since their discovery in rabbit neutrophils in 1966

[14], around fifty alpha defensin genes have been identi-
fied in primates, rodents, and equines, most of which
haven’t been analyzed in sufficient detail. The genes
evolve extremely rapidly, so that their copy number in
various organisms and even in individual genomes of
the same species significantly varies [15]. Six best char-
acterized alpha defensins, which are most abundantly
expressed in the human body, include four peptides
expressed in neutrophils (DEFA1 through 4, previously
referred to as human neutrophil peptides HNP1-4) and
two enteric defensins - DEFA5 and 6 (formerly desig-
nated as HD5 and 6). DEFA5 and 6 are secreted in the
mucous layer by Paneth cells of small intestine and
colon and to a smaller extent by cells of female repro-
ductive tract and oropharyngeal mucosa [16,17]. Besides,
Paneth cells produce more than a dozen of other
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antimicrobials, including lysozyme, IgAs, angiogenins,
and secreted phospholipase A2 [16].
Twenty-four murine alpha defensin genes are listed in

the mouse genome informatics database http://www.
informatics.jax.org, six of which (enteric alpha defensins
1 through 6, formerly referred to as cryptdins) have
been thoroughly investigated in recent years. Unlike
humans, rats, and rabbits genomes, mouse DNA does
not contain Defa encoding genes that are expressed in
neutrophils [18]. Recently, eleven murine alpha defensin
related genes (formerly called cryptdin related
sequences) with yet unknown functions have been iden-
tified. These genes encode prepro-sequences that are
nearly identical to those of alpha defensins, but their
mature peptides show no homology to defensins [19].

Gene expression and peptide processing
Human and murine enteric alpha defensin genes consist
of two exons, whereas alpha defensin genes expressed in
human neutrophils consist of three exons, two of which
(second and third) are homologous to enteric defensins
[1]. Search for orthologous sequences in promoters of
these genes revealed presence of putative binding sites
for transcription factors AP1, OCT1.4, and GCN4
[20,21]. Upstream regions of human DEFA5 and murine
Defa4 genes contain highly conserved cis-acting ele-
ments as evident from the expression of functionally
active human peptide in small intestinal crypts of mice
transgenic for human DEFA5 minigene construct [22].
Analysis of postnatal changes in concentration of mur-

ine enteric defensins in the small intestine of conventional
and germ-free mice revealed two patterns of gene expres-
sion: gradual increase in production of defensins 1, 3 and
6 and rapid raise in secretion of defensins 2, 4 and 5 in the
jejunum (but not in the ileum), which is presumably
induced by the presence of luminal bacteria [23]. In adult
mice alpha defensins are equally expressed along the small
intestine except Defa4, which is more abundant in the
ileum as compared to the duodenum [24]. Recently, it has
been shown, that in human tropical populations secretion
of enteric alpha defensins may decrease up to ten times, as
compared to Europeans, due to down-regulation of gene
expression in response to infections, inflammatory condi-
tions, and malnutrition [25].
Human enteric alpha defensins are synthesized in vivo

as precursor proteins, some of which have antimicrobial
activity. For example human DEFA5 prepropeptide (aa
1-94), contains signal peptide (aa 1-19) and propeptide
(aa 20-94), which is subsequently processed into major
mature peptide (aa 63-94), and minor mature peptide
(aa 56-94) [26]. The prosequence flanking the mature
peptide is necessary for correct intracellular sorting and
trafficking of the propeptide into the secretory vesicles,
where it is proteolytically processed by trypsin during

secretion [27,28]. Conversely, murine defensins are
stored in vesicles in a mature form after propeptide pro-
cessing by matrilysin (also known as matrix metallopro-
teinase Mmp7) [29]. It has been shown that abrogation
of murine alpha defensin processing by targeted disrup-
tion of the matrilysin gene increases susceptibility of
Mmp7 knockout mice to oral challenges with enteric
bacteria, whereas transgenic mice overexpressing human
DEFA5 are markedly resistant to orally administered
virulent Salmonella typhimurium, due to proper proces-
sing of human propeptide by murine matrilysin [22].

Structure of the intestinal epithelium
The mucosal surface of the small intestine consists of
crypts of Lieberkühn and villi. Due to the constant shed-
ding of gut epithelial cells in the lumen the whole
epithelium renews once in four-five days, except for
Paneth cells, which live approximately 70 days. Intestinal
epithelium is derived from multipotent columnar stem
cells located at the base of the crypt, which expess
LGR5 receptor and other stem cell-specific protein mar-
kers [30]. An alternative pool of stem cells is positioned
higher in the crypt wall [30-32]. Columnar stem cells
give rise to actively proliferating transit amplifying cells
differentiating into four major epithelial cell lineages: 1)
enterocytes absorbing nutrients; 2) goblet cells produ-
cing mucus; 3) enteroendocrine cells secreting hor-
mones in the capillaries of the underlying connective
tissue (lamina propria); and 4) Paneth cells secreting
enteric alpha defensins, as well as other antimicrobials
in the mucous layer. Besides, stem cells generate less
documented microfold cells (M-cells) responsible for the
uptake of mucosal antigens [33] and the recently
described tuft cells secreting endogenous intestinal
opioids [34]. Paneth cells protect the adjacent stem cells
and the whole gut epithelium from microbial infection
and regulate bacterial colonization of the gut [35].

Functions of enteric alpha defensins
Enteric alpha defensins are the most abundant products
secreted by Paneth cells [36]. The main inducers of
their secretion are the products of degradation of Gram-
positive and Gram-negative bacteria, inhabiting the gut
including: muramyl dipeptide, bacterial lipopolysacchar-
ide, flagellin, lipid A, and unmethylayed CpG sequences
in bacterial DNA. Their presence in the mucous layer of
the intestinal epithelium is constantly monitored by the
three receptor types that are expressed in Paneth cells
and enterocytes: 1) toll-like receptors (TLRs, including
the most abundant cell surface receptors 2 and 4); 2)
cytoplasmic nucleotide oligomerization domain-like
receptors (NLRs, in particular NOD1 and 2); and 3) reti-
noic acid inducible gene 1-like receptors (RLRs, includ-
ing the most abundant receptor RIG1) (Figure 1) [37].
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Receptor signals transmitted by the MAP kinase signal-
ing pathway induce translocation to the nucleus of tran-
scription factors, which initiate transcription of genes
that are involved in functioning of the innate and adap-
tive immune systems and stimulation of inflammation,
wound healing, and angiogenesis in the adjacent con-
nective tissues [38-40].
Detection of microbial presence in the mucous layer

of the gut results in massive release of enteric alpha
defensins by Paneth cells that leads to an enhanced kill-
ing of microbes in the lumen. Simultaneous secretion of
alpha defensins in lamina propria [12] triggers two
opposite defense mechanisms of pro- and anti-inflam-
matory response. According to the first mechanism,
human enteric alpha defensins bind to as yet unidenti-
fied Gai-protein coupled receptors located on the sur-
face of macrophages and T lymphocytes of lamina
propria (Figure 1) [41-43], which leads to proliferation
of T lymphocytes and their chemotaxis to the site of
inflammation [44]. Moreover, it was shown that murine
defensins 2 and 3 (as well as beta defensins) may induce
reversible formation of ion channels on apical mem-
branes of undifferentiated Cl- secreting cells of the
crypt. This results in salt and water secretion, causing
the crypt lumen to be flushed after Paneth cell discharge
[45].

At the same time enteric alpha defensins moderate
intestinal anti-iflammatory response, as a consequence
of suppression of IL1 beta release from bacterial lipopo-
lysaccharide-activated monocytes [46] and inhibition of
interleukin 17-producing T helper cell proliferation in
lamina propria (Figure 1) [36]. In order to avoid the
immune response, microbes inject effector proteins into
intestinal epithelial cells that either block their immune
and inflammatory response (mostly due to inactivation
of transcription factors NF-�B or AP-1) or reprogram
signaling pathways sensing and killing bacteria [47,48].
Besides, microbes are able to block expression of enteric
alpha defensins and other antimicrobial substances by
Paneth cells using as yet unknown mechanisms [49].

Enteric defensins in pathology
Changes in secretion of enteric alpha defensins have
been registered in the intestinal epithelium of patients
with inflammatory bowel disease (IBD) - a large group
of inflammatory illnesses of the gastrointestinal tract,
which are caused by immune system over-activation due
to a loss of tolerance to gut microflora [50-52]. Two
major types of IBD are Crohn’s disease (major location -
terminal ileum) and ulcerative colitis (predominant
lesions in colon and rectum). Susceptibility to Crohn’s
ileitis in European and North American populations is

Figure 1 Schematic diagram of enteric alpha defensins functions in the immune defense of the gut. Paneth cell receptor activation by
microbe’s degradation products results in defensins secretion in the lumen (aimed at the regulation of bacterial colonization) and in lamina
propria (in order to activate pro- and anti-inflammatory responses of the adaptive immune system cells). SC - stem cells, PC - Paneth cells, TAC -
transit amplifying cells, which give rise to two partially differentiated cell lineages: progenitors of secreting cells (SEC) and progenitors of
enterocytes (EC).
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most strongly associated with mutations in the gene
encoding cytoplasmic protein NOD2 - bacterial mura-
myl dipeptide receptor from NLR family, which is essen-
tial for activation of enteric alpha defensins secretion by
Paneth cells (Figure 1) [53]. Accordingly, mutations in
NOD2 encoding gene (most frequently a frame shift
Leu1007fsX1008, caused by single nucleotide insertion
3020insC or “snp13”) lead to a decreased level of enteric
alpha defensins in the intestinal mucosal extracts [54].
Analysis of Nod2-deficient mice confirmed decreased
secretion of alpha defensins 1-6 by Paneth cells and
demonstrated inability of such mice to develop intestinal
inflammation, which results in their susceptibility to
bacterial infection by oral administration [55]. Part of
the cases of Crohn’s ileitis is independent of NOD2 gen-
otype and is linked to changes in the WNT pathway,
mostly due to a decreased activity of transcription factor
TCF4 that binds to enteric defensins gene promoters
[56].
The second major type of IBD - ulcerative colitis is

associated with the infection of gastrointestinal tract by
bacterium Helicobacter pylori [57]. Subsequent over-
activation of the intestinal immune system results in ele-
vated secretion of enteric alpha defensins (as well as
TNF alpha and IL1 beta) suggesting that Helicobacter is
able to avoid the innate and adaptive immune response
in human intestine by as yet unknown mechanisms [58].
Similar to ulcerative colitis, 15% of gastrointestinal

malignancies arise as a consequence of chronic micro-
bial infections, as demonstrated by the raised chance of
hepatocellular carcinoma in patients with chronic hepa-
titis, association between Helycobacter pylori infection
and higher gastric cancer risk, and increased chance of
colon cancer in patients with inflammatory bowel dis-
ease [59]. At initial stages of colon carcinogenesis, muta-
tions in intestinal epithelial cells lead to constitutive
activation of the Wnt pathway in early adenoma cells,
which simultaneously follow differentiation programs of
progenitor and Paneth cells [60]. This results in 60 fold
increase of DEFA5 and DEFA6 production by tumors,
as compared to normal colonic epithelium [61,62].
Besides, both early adenomas and adenocarcinomas
acquire the ability to secrete these proteins into the
bloodstream. Thus, enteric alpha defensins are promis-
ing markers for early diagnosis of colon cancer provided
that test sensitivity is sufficient for their robust detection
in sera.

Conclusion
Enteric alpha defensins play an important role in regula-
tion of bacterial colonization of the gut, as well as in
activation of pro- and anti-inflammatory response of the
adaptive immune system cells in lamina propria. Further
studies of the defensins functions in norm and

pathology can provide important clues for the develop-
ment of new tools for diagnosis and treatment of gastro-
intestinal cancers and most widespread inflammatory
illnesses of the small and large intestine.
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